- Événements
mediachimie

Un prix Nobel pour la « nanochimie »

Le prix Nobel de chimie qui vient d’être décerné ce 4 octobre par l’Académie royale des sciences de Suède couronne trois chercheurs Moungi G. Bawendi (MIT), Louis E. Brus (Columbia University) et Alexei I. Ekimov
...

Le prix Nobel de chimie qui vient d’être décerné ce 4 octobre par l’Académie royale des sciences de Suède couronne trois chercheurs Moungi G. Bawendi (MIT), Louis E. Brus (Columbia University) et Alexei I. Ekimov (Nanocrystals Technology Inc.) pour le développement des « points quantiques » dénommés encore « boites quantiques » ou en anglais « quantum dots ».

Sous ces noms énigmatiques on trouve une très belle découverte due au savoir-faire des chimistes qui savent fabriquer des nanoparticules de semi-conducteurs tels que des séléniures ou tellurures comme CdSe et CdTe mais aussi PbSe et ZnSe. On part de précurseurs organométalliques et par un réducteur doux sont obtenues des suspensions colloïdales maitrisables où l’on peut arrêter la croissance des particules à quelques nanomètres (entre 2 et 10 nm). C’est plus de 10 000 fois plus petit qu’un cheveu.

Qu’arrive-t-il à ces minuscules particules de semi-conducteurs ?

Alors que dans un semi-conducteur les électrons se partagent entre 2 bandes d’énergie séparées par un gap, le fait que l’on diminue exagérément la taille du semi-conducteur, les niveaux d’énergie ne s’organisent plus en bandes mais se réduisent à des niveaux individuels discrets : on dispose alors de niveaux « quantiques » et les transitions électroniques s’accompagnent d’une émission lumineuse qui dépend de la taille de la nanoparticule bleu pour 2 nm, vert pour 3 nm, rouge pour 6 nm…

Déposés sur un écran plat de télévision éclairés par une LED bleue ils émettent par fluorescence des fréquences qui élargissent l’espace colorimétrique avec une énergie abaissée. Avec les téléviseurs QLED différents des OLED on gagne en intensité lumineuse et en nombre de couleurs.

Une autre qualité de ces nano semi-conducteurs c’est que sous l’influence de la lumière ils sont capables d’émettre des électrons et donc un courant. Avec un bon drainage de celui-ci on peut disposer de vitres transparentes puisque leur taille est plus petite que certaines longueurs d’onde du visible. Même si leur rendement est faible (moins de 3%) on commence à imaginer pour les immeubles des vitrages photovoltaïques grâce aux « quantum dots ».

Enfin en imagerie médicale leur taille réduite permet d’avoir des pixels très petits et une définition d’image améliorée pour la détection de cellules cancéreuses.

Jean-Claude Bernier
Octobre 2023


Les quantum dots sont des nanoparticules de semi-conducteurs qui, éclairées par une LED bleue, émettent une lumière dont la couleur dépend de la taille. Source : Chimie et lumière (EDP Sciences, 2021) p. 144. ISBN: 9782759825073

 

Pour en savoir plus

 

Crédit : Moungi Bawendi, Louis Brus et Alexei Ekimov. Prix Nobel de Chimie 2023. Ill. Niklas Elmehed © Nobel Prize Outreach.
 

- Question du mois
mediachimie

Pourquoi recycler les anciennes radiographies médicales ?

À la suite du décès d’une personne âgée, la collecte des radiographies d’une longue vie peut atteindre plusieurs kilos. Qu’en faire ? Nous nous limiterons au cas des radiographies médicales argentiques que nos
...

À la suite du décès d’une personne âgée, la collecte des radiographies d’une longue vie peut atteindre plusieurs kilos. Qu’en faire ?

Nous nous limiterons au cas des radiographies médicales argentiques que nos grands-parents et parents ont dans leurs placards et qui sont encore produites (cas des mammographies, des radios des hanches, clichés dentaires…). Celles-ci peuvent être déposées dans des centres de radiologie ou des pharmacies ou dans des déchetteries ayant des contenants dédiés.

Les radiographies médicales de type argentiques doivent être éliminées dans des filières spécifiques : enfouies elles entrainent une pollution de la nappe phréatique et incinérées une pollution de l’air en raison de la présence d’argent (1).

Premier tri

Les radiographies sont d’abord triées manuellement pour séparer le papier (emballage, compte-rendu) du film proprement dit. Celui-ci est avant impression un support en PET (PolyEthylene Terephthalate en anglais) recouvert d’une émulsion (contenant des cristaux d’halogénures d’argent (i) de 0,2 à 4 µm dans de la gélatine (ii)) et d’un revêtement de protection en gélatine pure (2). L’obtention de la radiographie se fait par réduction des ions Ag+ en argent métallique. Lorsque la radiographie arrive au circuit de recyclage elle se compose du support PET et d’un dépôt d’argent métallique incrusté dans la gélatine.

Le papier récupéré (avec un pourcentage massique de 3 à 40%) est broyé puis recyclé dans la filière papier.

Quant au film, il est plongé successivement dans des bains enzymatiques constituées de gélatinases. La gélatine recouvrant le film est alors hydrolysée et devient soluble dans l’eau. On sépare ainsi le support en PET (solide), qui sera recyclé dans la filière plastique, des jus de lavage (liquide) qui contiennent les enzymes et l’argent.

Recyclage du PET

Le PET est un polyester, polymère thermoplastique obtenu par la polycondensation de l’acide téréphtalique et de l’éthylène glycol selon (4) :

Un des recyclages possibles consiste depuis peu en une dépolymérisation à l’aide d’enzymes pour revenir in fine aux monomères, au diacide et à l’éthylène glycol (5).

L’autre mode de recyclage possible consiste à refondre le PET puis à l’utiliser dans une autre application comme les fibres polyesters par exemple.

Recyclage du jus pour obtenir l’argent

Ce jus est placé en filtre-presse : cet équipement permet la séparation liquide/solide à l’aide d’une filtration sous pression et de récupérer d’un côté le bain enzymatique qui est utilisé en boucle fermé et de l’autre les boues argentifères. Celles-ci sont alors calcinées. Les cendres de calcination sont fondues et on récupère ainsi l’argent métallique.

Ainsi chacun des constituants peut être recyclé : le papier, la matière plastique (PET) et l’argent qui représente moins de 1% du poids des films argentiques mais qui a une forte valeur ajoutée.

En résumé

Quelques chiffres

En France, en 2022 l’argent recyclé ne représente qu’une centaine de tonnes soit moins de 2% de l’argent recyclé mondialement (6), et seule une partie provient des radiographies mais « chaque geste compte ». Les besoins en argent sont pourtant importants : en particulier 90 % des cellules photovoltaïques sont formées d’une fine couche d’argent et représentent 15 % de leur coût de revient (7).

 

Lydie Amann et l’équipe question du mois

 

(i) Les halogénures d’argent utilisés sont des bromures d’argent AgBr ou chlorures d’argent AgCl.
(ii) La gélatine est un mélange de protéine et d’eau qui forme un gel.
 

Pour en savoir plus
(1) Voir les sites web des sociétés "Rhône Alpes Argent" et "Chastanier radiographies" (en particulier pour cette dernière société la page "Radiographies" et la page "Archives médicales > Visite virtuelle de l'usine")
(2) La réalisation du support est comparable à celle des films argentiques pour photographies. Consulter Photographie/Émulsions argentiques/Préparation des surfaces sensibles noir et blanc sur wikilivres.
(3.a) Fin de vie des plastiques : le mariage réussi des plastiques et des enzymes/ressource/fin-de-vie-des-plastiques-le-mariage-r%C3%A9ussi-des-plastiques-et-des-enzymes A. Marty, article et conférence, Colloque Chimie et biologie de synthèse, Fondation de la Maison de la chimie (2018)
(3.b) Vidéo sur la biodégradation du PET, Déchets plastiques : les enzymes font le ménage, Coproduction Fondation de la Maison de la Chimie/Virtuel
(4) Comment le recyclage en chimie contribue-t-il à l'économie circulaire ? Fiche Grand Oral Nathan Mediachimie pp. 6-7
(5) Recyclage des plastiques sur le site IFP Énergies nouvelles
(6) Enquête mondiale sur l’argent 2023 World Silver Survey sur le site The Silver Institute
(7) Données industrielles relatives à l’argent sur le site de l’Elementarium

 

Crédit illustration : com329329 / Pixabay

- Éditorial
mediachimie

Comment est fabriqué le ballon de rugby ?

La Coupe du monde de rugby en France suscite en cet automne un engouement très britannique mais aussi très international avec ces vingt équipes venues du monde entier. On connait moins le rugby que le football avec ses
...

La Coupe du monde de rugby en France suscite en cet automne un engouement très britannique mais aussi très international avec ces vingt équipes venues du monde entier. On connait moins le rugby que le football avec ses règles où se mélangent les passes en arrière et les mêlées organisées et où 30 athlètes affamés se disputent la possession d’un curieux ballon ovale.

En 2023 le ballon officiel de match « INNOVO » du fabricant du Sussex Gilbert n’a plus grand-chose à voir avec le ballon originel que prit à la main William Webb Ellis vers 1823 qui créa ainsi ce nouveau jeu. Il est probable que ce fut un ballon de football plutôt rond qu’ovale qui fut d’abord fabriqué par un cordonnier William Gilbert de la ville de Rugby.

C’est donc à lui qu’on attribue l’invention du ballon de rugby fait au départ de vessies de porc fraiches recouvertes de quatre panneaux de cuir. C’est à la demande des étudiants qu’il fait évoluer leurs formes avec des ballons de plus en plus ovales, plus faciles à attraper, à tenir en courant, roulant plus mal et sortant moins du terrain. De 1850 à 1880 la petite entreprise fabrique plusieurs milliers de ballons par an.

Une première modification est introduite par Richard Lindon qui invente une vessie en caoutchouc (1) qui se gonfle avec une pompe à air et évite de gonfler à la bouche les vessies de porc qui ont parfois contaminé les ouvriers chargés du gonflage. Progressivement les dimensions du ballon se normalisent autour de 30 cm de long et de 60 cm de circonférence du petit périmètre. Si la vessie reste en caoutchouc souple le ballon en cuir est lisse et donc glissant ; lorsqu’il pleut le cuir absorbe l’eau en augmentant son poids et se déforme plus facilement ce qui n’arrange pas le jeu au pied et complique la tâche des tireurs qui transforment les essais par tirs au but.

C’est dans les années 1990 que le ballon « synthétique » va s’imposer : le cuir va être remplacé par du caoutchouc plus dur, du polychlorure de vinyle (PVC) (2) ou du polyuréthane (PU) (3). La vessie en latex est de plus en plus substituée par un caoutchouc butyl (4) et à une pression de 9,5 PSI (i) elle se dégonfle moins.

Les nouvelles compétitions, Tournoi des Nations, Coupes d’Europe et Coupes du monde, vont voir une course à l’innovation. La petite entreprise Gilbert devenue grande reste encore une marque de référence devant Adidas et Summit. C’est elle qui est en 2023 la marque officielle de la Coupe du monde en France avec le ballon « INNOVO » qui contient une vessie en copolymère butyl (ii) protégée par 4 plis de polycoton et caoutchouc et une double valve brevetée « truflight » insérée dans une couture des 4 panneaux de polyuréthane sur lesquels sont moulés des « crips », picots en forme d’étoiles de hauteurs millimétriques différentes du centre vers les extrémités permettant une meilleure dispersion de l’eau, une bonne prise en main et un aérodynamisme amélioré. Dissimulées dans les coutures, faites à la main, la double valve et son contrepoids contribuent à un équilibre parfait. En 2023 cette double valve munie de capteurs donne naissance avec le partenaire de Gilbert Sportable Technologies à un « ballon intelligent » (5). Les entraineurs ou les équipes peuvent intégrer des ballons connectés et afficher sur écran d’ordinateur les statistiques du match, en temps réel. La vitesse du ballon, sa rotation, la distance de la passe, la précision du coup de pied… toutes données exploitables, ne serait-ce que pour préparer la prochaine Coupe du monde en Australie en 2027.

Plus simple et terre à terre pour les enfants et l’initiation à ce beau sport, préférez le ballon en mousse de polyester qui est aussi amusant.

Jean-Claude Bernier
septembre 2023

 

(i) Le PSI ou Pound-force/square inch est l'unité anglosaxone de mesure de pression. 1 PSI = 6,89476 kPa = 0,0689476 Bar donc 9,5 PSI = 0,655 bar.
(ii) La caoutchouc butyl est un copolymère d’isobutylène et d’isoprène
 

Pour en savoir plus
(1) Comment fabriquer des pneus à partir d’un arbre ? La vulcanisation,  Jean-Claude Bernier (fiche Une réaction en un clin d'oeil)
(2) PVC voir Produit du jour de la société chimique de France
(3) Chimie et pluie de records aux jeux olympiques de Tokyo, Jean-Claude Bernier (éditorial) ; PU voir Produit du jour de la société chimique de France
(4) Le caoutchouc synthétique BUP
(5) Shootez, vous êtes connectés, Jean-Claude Bernier (editorial)

 

Crédit illustration : Erwan Harzic- Travail personnel / Wikimedia Commons (licence CC BY-SA 4.0)

- Événements
mediachimie

Colloque Chimie, Recyclage et Économie Circulaire - mercredi 8 novembre 2023

Réservez votre journée du mercredi 8 novembre pour participer au colloque accessible au grand public à la Maison de la Chimie.  Colloque Chimie, Recyclage et Économie Circulaire  Mercredi 8 novembre 2023  Maison de la
...

Réservez votre journée du mercredi 8 novembre pour participer au colloque accessible au grand public à la Maison de la Chimie.

 Colloque Chimie, Recyclage et Économie Circulaire
 Mercredi 8 novembre 2023 

Maison de la Chimie, 28 bis rue Saint-Dominique, 75007 Paris

 

Les programmes nationaux, les colloques et séminaires de réflexions nationaux et internationaux sur le thème du recyclage sont nombreux, notre objectif n’est pas de faire un nième colloque mais d’apporter sur ce sujet d’importance des exemples et des réponses aux questions que se posent le monde éducatif – élèves et enseignants – et le grand public. Ce thème est fondamental pour l’avenir de notre planète : ni la gestion des déchets envahissants , ni la mise en oeuvre des transitions énergétiques et écologiques ne pourront être mises en oeuvre sans le recyclage car les ressources en matières premières organiques et minérales n’y suffiront pas.

Il est nécessaire d’agir et nous souhaitons montrer l’importance mais aussi les difficultés de la chimie du recyclage qui est une chimie de la « dé et reconstruction » Il faut gérer à la fois la logistique des produits usagés et des déchets et l’économie des procédés en respectant les règles imposées en terme d’empreinte carbone.

Le recyclage apparaît comme une nouvelle discipline coûteuse mais indispensable dans laquelle les chimistes jouent et joueront un rôle important.

Les conférenciers ont été choisis parmi les meilleurs experts de l’industrie, de la recherche, de la politique et de l’économie, dans les différents domaines concernés.

Ce colloque est ouvert sur inscription à un large public avec une attention particulière aux jeunes et à leurs enseignants. Pour que ce colloque puisse être accessible au plus grand nombre, il sera diffusé en direct sur la chaine YouTube de Mediachimie.

Le niveau se veut accessible à tous pour permettre un large débat.

Danièle Olivier et Jean-Claude Bernier
Co-Présidents du comité d’organisation

 

En savoir plus

Inscription gratuite et obligatoire : INSCRIPTIONS

 

Conception graphique : CB Defretin | Images : Adobe Stock – © Therina Groenewald – © monticellllo – © saelim – © sida – © VisualProduction – © Janar Siniväli – © Andrei Merkulov – © Joaquin Corbalan

- Question du mois
mediachimie

Pourquoi économiser l’eau potable est-il aussi source d’économie d’énergie ?

Le 22 mars 2023 était la journée mondiale de l’eau qui met l'accent sur l'importance de l'eau douce. L’assemblée générale des Nations-Unies (1) soutient la réalisation de l'objectif de développement durable : eau propre
...

Le 22 mars 2023 était la journée mondiale de l’eau qui met l'accent sur l'importance de l'eau douce. L’assemblée générale des Nations-Unies (1) soutient la réalisation de l'objectif de développement durable : eau propre et assainissement, pour tous d'ici à 2030.

Si l’eau recouvre 72 % de la surface du globe, son volume étant estimé à 1400 millions de km3 (2), elle est à 97,2 % salée et présente dans les océans et les mers intérieures. Il y a donc 2,8 % d’eau douce sur la Terre mais seulement 0,7 % sont disponibles (nappes phréatiques et minoritairement lacs et rivières) pour les besoins vitaux. En effet le reste de l’eau douce se trouve sous forme de glace et neige. L’augmentation de la population mondiale et le changement climatique accentuent cette demande sur cette réserve limitée en eau douce.

Mais l’accès à l’eau douce ne suffit pas. Encore faut-il qu’elle soit potable. 1/4 de la population mondiale, soit 2, milliards de personnes, vit sans accès à l’eau potable. En France l’eau courante au robinet n’est pas une pratique si ancienne. Cosette (3) allait chercher l’eau de la rivière avec son seau. C’était aux environs de 1820 et cette eau n’était pas contrôlée. Il a fallu attendre 1930 pour que 30 % des communes en France aient un réseau d’approvisionnement en eau potable et ce n’est qu’en 1980 que la quasi-totalité de la population y a eu accès. En 2020, en France, la consommation moyenne en eau potable quotidienne est de 149 L/personne (4).

De la source au robinet : comment obtient-on de l’eau potable ?

Plusieurs procédés de production d’eau potable existent selon l’origine de la ressource : eau souterraine (nappes phréatiques), eau de rivière, eau de surface, eau de mer.

Il s’agit in fine de fournir une eau propre à la consommation, c’est-à-dire claire et exempte de virus et de bactéries et de toute matière organique naturelle ou issue de pollutions (médicaments, pesticides…).

Le traitement des eaux issues des nappes phréatiques d’eau douce accessibles ou des eaux de rivières suit globalement les étapes suivantes (5) : pompage de l’eau, stockage provisoire d’eau brute à traiter, dégrillage puis tamisage, dans certaines unités élimination d’une partie du calcaire contenue dans l’eau (décarbonatation) par précipitation puis filtration, pré-ozonation, filtrations sur argile, post-ozonation, filtration sur charbon actif puis chloration avant acheminement via les canalisations jusqu’à l’usager final. Il y a passage par les châteaux d’eau pour maintenir la pression dans le réseau de distribution. Une étape supplémentaire pour éliminer les nitrates pourra être nécessaire dans certaines régions à l’agriculture intensive.

La molécule d’ozone ou trioxygène, de formule O3, est un gaz instable, donc produit sur le site de traitement de l’eau par décharge électrique (arc électrique) dans le dioxygène (6). L’ozone a un très fort pouvoir oxydant et est virucide et bactéricide. Il participe aussi à l’élimination des odeurs.

La pré-ozonation utilise de l’ozone faiblement concentré et permet de déstructurer les particules colloïdales et les macromolécules et d’oxyder le fer et le manganèse dans les eaux souterraines peu chargées en matière organique. Dans la post-ozonation, sa concentration est plus forte et le temps de contact plus long. Elle permet la destruction des molécules organiques.

La filtration sur charbon actif, permet in fine la rétention des micro-résidus issus de la post ozonation. Puis, l’eau de Javel (7) est utilisée pour l’étape dite de « chloration ». Cette chloration est nécessaire pour maintenir l’absence de virus et bactéries tout au long des kilomètres du réseau. L’ozone ne pourrait pas remplir ce rôle car, trop instable, elle ne reste pas dans l’eau contrairement à l’eau de Javel. Il y a toutefois des points de contrôles régulièrement répartis sur le réseau afin de réajuster si nécessaire sa concentration.

Toutes ces étapes consomment de l’électricité.

Le traitement de l’eau de mer

Avant de la rendre potable il faut préalablement ajouter l’étape de désalinisation. Deux procédés existent : la distillation et l’osmose inverse. Ces procédés consomment beaucoup d’énergie. L’osmose inverse est majoritairement préférée de nos jours car moins gourmande en énergie.

Le procédé d’osmose inverse nécessite l’usage d’une membrane semi-perméable (8) séparant deux compartiments, dont l’un d’entre eux contient l’eau de mer salée. Il faut alors exercer dans ce compartiment une pression supérieure à la pression osmotique (9), ce qui force alors l'eau à passer, via la membrane semi-perméable, dans l’autre compartiment où l’eau pure qui s’y accumule est sans sel. Dans la pratique la pression exercée évolue entre 50 et 70 bars. De nombreuses recherches ont lieu pour diminuer le coût énergétique et passent par l’amélioration de la perméabilité de la membrane permettant d’abaisser la pression à exercer, tout en conservant sa sélectivité. De grand espoirs sont mis dans des membranes biomimétiques hautement sélectives (10).

Près de 100 millions de m3 d’eau par jour sont produits par dessalement d’eau de mer, dans environ 15 000 installations situées dans 150 pays.

Une fois dessalée, l’eau doit être potabilisée selon les étapes préalablement citées. Il est aussi souvent nécessaire de réintroduire quelques sels minéraux pour la rendre consommable.

Du lavabo à la rivière : comment traite-t-on les eaux usées ?

Les eaux usées sont les eaux que nous rejetons vers les égouts, quand on fait la vaisselle et le ménage, quand nous nous lavons, quand nous allons aux toilettes… Il s’agit de dépolluer ces eaux usées, avant de les rejeter dans la rivière. Mais attention, cette eau dépolluée n’est pas potable.

Il est nécessaire dans un premier temps de séparer les matières en suspension des eaux usées.  Après une étape de décantation qui permet de séparer l’eau à traiter des huiles et graisses qui surnagent et des sables et solides plus denses, l’eau sale subit un traitement biologique aérobie. Des bactéries et micro-organismes naturels « digèrent » les contaminants organiques en présence de l’oxygène de l’air.

Ces traitements biologiques sont très efficaces, très résistants aux variations de température et peuvent être utilisés efficacement dans presque tous les climats. L’eau ainsi dépolluée est rejetée à la rivière.

Dans certaines unités, l’eau peut, avant rejet à la rivière, subir une ultrafiltration membranaire. Une membrane perméable est constituée d’un tube souple présentant des micro-perforations, jouant le rôle de filtre, capables de retenir des protéines ayant une taille de 0,03 µm. L’eau et les ions monovalents (comme les ions sodium et chlorure), ainsi que les ions divalents comme les ions calcium ou manganèse passent la barrière de la membrane avec l’eau. L’eau rejetée à la rivière a alors la qualité d’une eau de piscine.

Par ailleurs les boues issues du traitement biologique peuvent subir un traitement anaérobie, produisant du méthane, CH4, nommé biogaz, source d’énergie. Ainsi les unités d’épuration des eaux usées, tendent de plus en plus à être autonomes en énergie.

Comment recycler les eaux usées ?

On peut l’envisager pour l’irrigation et le nettoyage de la voirie par exemple. Aujourd’hui seulement 0,6 % des eaux usées sont réutilisées en France alors qu’en Italie le pourcentage est de 8 %, 14 % en Espagne et 84 % en Israël.

Aux Sables d’Olonne en Vendée vient de démarrer la construction d’une usine de recyclage des eaux usées afin d’obtenir de l’eau potable, dans le cadre du programme Jourdain (11). Cette usine est une usine pilote pour la France et pour l’Europe. Le nom Jourdain est à la fois inspiré du fleuve Jourdain et du Bourgeois gentilhomme de Molière ! (12)

Cette usine sera connectée à la station d’épuration voisine et l’eau sera nettoyée en cinq étapes : ultrafiltration, osmose inverse, traitement aux UV qui élimine les microbes pathogènes avec une fiabilité de 99,99%, puis une chloration à l’eau de Javel, une filtration et enfin une reminéralisation (13).

Eau et Énergie : l’interdépendance

Comme on vient de le voir, l’ensemble du cycle de l’eau consomme de l’énergie, du pompage à l‘épuration. Cela représente 2 à 3 % de l’énergie mondiale utilisée. Dans les zones urbaines, 1 à 18 % de l’électricité sont utilisés pour traiter et transporter les eaux potables et usées.

La figure 1, indique des fourchettes de valeurs concernant la consommation en électricité des différentes opérations décrites précédemment tout au long du cycle de l’eau. Selon les cas de figure, le captage, la potabilisation, la distribution, la collecte et l’épuration de 1 m3 nécessitent entre 1,8 et 9,5 kWh.

 
Figure 1 : Besoins en électricité dans le cycle de l’eau. Source : Eau et énergie sont indissociables p. 12 (14) 

La consommation énergétique dépend également de la nature de l’eau à traiter. Dans le tableau 1, les trois premières lignes concernent des eaux brutes toutes distribuées sans être embouteillées.

 
Tableau 1 : Consommation énergétique en fonction de l’eau à traiter. Source : Eau et énergie sont indissociables p. 12 (14) 

Concernant l’eau en bouteille : il s’agit d’eaux minérales ou de source (15), issues d’eaux souterraines, microbiologiquement saines, et non traitées. Leur impact énergétique très élevé provient majoritairement des matières premières et de l’énergie nécessaires à la fabrication des bouteilles.

On retiendra donc que « Économiser l’eau revient à économiser aussi l’énergie ».

 

On peut identifier trois axes principaux pour réduire la consommation d’énergie dans le cycle de l’eau :

  • développer de nouveaux concepts de stations d’épuration permettant de récupérer la chaleur et de produire de l’électricité́ à partir du biogaz ;
  • mettre au point des membranes d’ultrafiltration et d’osmose inverse moins énergivores ;
  • identifier tous les moyens de récupération de l’énergie consommée par les mises en pression au sein des procédés.

L’eau est essentielle à la vie. Il n’existe pas de substitut. Si l’énergie peut être renouvelable, l’eau n’est pas renouvelable ; depuis l’époque des dinosaures, la quantité́ d’eau douce sur la Terre n’a pratiquement pas évolué́. Il convient donc de la réutiliser au maximum. L’accroissement de la population, l’augmentation des standards de vie, la production de nourriture et l’industrialisation sans cesse croissante, engendrent une pression sur les ressources en eau qui n’a fait que croitre au cours des décennies. De plus, la pollution et la contamination des ressources en eau douce ont comme conséquence une diminution continue des réserves de qualité́ disponibles.

On notera qu’en France il existe un seul réseau de distribution d’eau à savoir d’eau potable et qu’il faut donc impérativement l’entretenir pour éviter les fuites (estimées à 20 %, soit pour 5 litres d’eau mis en distribution, 1 litre d’eau revient au milieu naturel sans passer par le consommateur) (16), ce qui est considérable. Et pour les citoyens que nous sommes, faisons tous ces petits et grands gestes pour ne pas gâcher l’eau (17).

Françoise Brénon et Odile Garreau

 

 

(1) Journée mondiale de l’eau des Nations-Unies
(2) L’Eau dans l'Univers, sur le site Eau France, le service public d'information sur l'eau
(3) Les Misérables de Victor Hugo
(4) Le service public d'information sur l'économie de l'eau
(5) Pour mieux comprendre ces étapes, consultez la fiche Chimie et… en fiches L’eau, une ressource indispensable pour la ville de A. Charles, A. Harari et J.-Cl. Bernier (Mediachimie.org) et le Memento degremont® Procédés et technologies  (SUEZ)
(6) Pour en savoir plus sur l’obtention de l’ozone, voir le Memento degremont® Génération de l’ozone (SUEZ) et sur l’ozone en général, la question du mois L’ozone : bon ou mauvais ? L. Amann (Mediachimie.org)
(7) L’eau de Javel est une solution basique contenant les ions hypochlorite ClO-. Compte tenu du pH de l’eau distribuée, qui est proche de 7,5, il y a coexistence de l’ion ClO- et de la molécule d’acide hypochloreux HClO qui est le composé le plus virucide et bactéricide des deux, car non ionique il traverse plus facilement la membrane cellulaire. L’eau de Javel : sa chimie et son action biochimique,  de G. Durliat, J.-L. Vignes et  J.-N. Joffin, Bulletin de l'Union des physiciens, n° 792, vol. 91 (mars 1997)  pp. 451-471
(8) Une membrane semi-perméable laisse passer l’eau mais pas les ions plus gros que la molécule d'eau, comme le sont les ions sodium Na+ et chlorure Cl-.
(9) La pression osmotique correspond à la différence des pressions exercées de part et d'autre d'une membrane semi-perméable par deux liquides contenant des ions de concentrations différentes.
Pour en savoir plus : L’osmose inverse, de J. Nahmias L’Actualité chimique n° 404 (février 2016) pp. 63-64
(10) Les canaux artificiels d’eau : des membranes biomimétiques pour le dessalement, de M. Barboiu, L’Actualité chimique n° 470 (février 2022) pp. 33-34
(11) Le Programme Jourdain sur le site Vendée Eau
(12) Le nom du programme évoque le fleuve Jourdain qui traverse Israël. Sa ressource partagée par les pays qui le bordent devient limitée. Israël est devenu un modèle pour sa réutilisation de plus de 90% de son eau potable et 50 % de son eau recyclée est consacrée à l’arrosage des terres cultivées.
Le nom fait aussi référence au Bourgeois gentilhomme ! Voir le Programme Jourdain sur le site de Veolia
(13) Pour en savoir plus consulter la fiche Chimie et… en fiches L’eau, une ressource indispensable pour la ville (figure2) de A. Charles, A. Harari et J.-Cl. Bernier (Mediachimie.org)
(14) Conférence et ressource Eau et énergie sont indissociables, de M. Florette et L. Duvivier, Colloque Chimie et enjeux énergétiques, Fondation de la Maison de la chimie (2012).
(15) Eaux conditionnées sur le site du Ministère, de la santé et de la prévention
(16) Rendement des réseaux d’eau potable, statistiques de 2012, sur le site Eau France, le service public d'information sur l'eau
(17) Consulter Comment économiser l’eau dans mon logement ?, sur le site Tout sur mon eau (SUEZ)

 

Crédit illustration : PublicDomainPictures/Pixabay

- Question du mois
mediachimie

Comment les retardateurs de flamme (RF) minimisent-ils les risques d’incendie ?

Depuis toujours la sécurité incendie a été la préoccupation des sociétés. Dès le XVIe siècle, les tentures des théâtres parisiens ont été traitées pour les rendre ininflammables. Mais c’est Gay-Lussac qui a publié en 1821
...

Depuis toujours la sécurité incendie a été la préoccupation des sociétés. Dès le XVIe siècle, les tentures des théâtres parisiens ont été traitées pour les rendre ininflammables. Mais c’est Gay-Lussac qui a publié en 1821 les premiers travaux scientifiques avec une note sur la propriété qu’ont les matières salines de rendre les tissus incombustibles (1).

Les feux de forêt souvent décrits dans les médias résultent de la combustion de l’élément carbone du bois. Le bois est un biopolymère composite tridimensionnel constitué de trois polymères de type polyglycoside : la cellulose (50%), l’hémicellulose (25%) et la lignine (25%). La combustion libère du dioxyde et du monoxyde de carbone (CO2 et CO), mais aussi des composés organiques volatils (COV), tels que des dérivés benzéniques ou terpéniques, qui sont très inflammables au contact de l’oxygène de l’air. De tout temps on a arrosé les feux avec de l’eau qui en se vaporisant chasse l’air et prive ainsi le feu en oxygène tout en faisant baisser la température. Peu à peu des additifs ont été ajoutés pour retarder les combustions et la propagation des flammes, ils sont appelés retardateurs de flamme (RF). Ils sont aussi ajoutés dans l’eau lors des largages aériens (2).

Pour protéger le bois des agressions extérieures (humidité, UV, champignons, insectes…), des revêtements ont été réalisés avec des peintures et des vernis. Ceux-ci contiennent des liants qui sont des polymères notés ici généralement R1H donc constitués principalement d’éléments réducteurs comme l’hydrogène et le carbone, et qui peuvent rendre inflammables ces polymères en présence d’une source de chaleur et de l’oxygène de l’air. Il est donc ajouté des RF aux peintures et vernis. De même des RF sont en général utilisés dans de nombreux plastiques de la vie courante pour atteindre des propriétés ignifugeantes reconnues.

Qualitativement on évoque les étapes suivantes quand un polymère brûle :

  • i) l’échauffement qui pour les thermoplastiques les ramollit et les fait fondre contrairement aux thermodurcissables à réseau 3D réticulés qui se ramollissent peu ou pas.
  • ii) la décomposition : au-delà d’une température critique, les liaisons se cassent pour former notamment des radicaux H. et O., engendrant des molécules organiques plus légères et inflammables.
  • iii) l’inflammation : qui dépend de la cinétique des décompositions des polymères, et des concentrations en dioxygène (O2) et en COV. L’inflammation se perpétue tant que la combustion des polymères continue pour générer des gaz combustibles (3).

Les modes d’action des RF sont présentés comme suit :

  • i) « empoisonner » la phase gazeuse en inhibant les réactions radicalaires par des réactions de transfert ou de recombinaison. Les premiers RF étaient des dérivés halogénés notés RX, qui conduisent aux équations de réaction : RX + R1H → R – R1 + HX
  • L’hydracide HX formé a un rôle inhibiteur vis-à-vis des radicaux H. et HO., qui sont présents dans la flamme selon les équations suivantes : HX + H. → H2 + X. et HX + HO. → H2O + X.
  • ii) refroidir et protéger le polymère en ajoutant des hydroxydes métalliques d’aluminium ou de magnésium. Ils doivent être incorporés en grande quantité (60% en masse !) pour avoir une efficacité notable mais ceci entraîne une perte sensible des propriétés mécaniques du polymère. Leur décomposition vers 200 °C s’accompagne de la formation respective d’oxydes d’aluminium ou de magnésium ce qui constitue une couche protectrice ralentissant la dégradation du polymère ; c’est l’étape dite de la céramisation.
  • iii) le matériau, chauffé au-delà d’une certaine température critique se gonfle en donnant une barrière alvéolaire, susceptible de protéger le polymère : c’est l’étape d’intumescence.

Ceci nécessite alors des formulations précises avec principalement trois composés :

  • a) d’abord une source acide avec souvent des phosphates d’ammonium (par exemple (NH4)3PO4) qui chauffés vers 200°C, se décomposent en ammoniac gazeux et en acide phosphorique ce qui conduit à un pH acide (i) voisin de 2, hydrolysant alors les liaisons chimiques du polymère ;
  • b) ensuite une source de carbone apportée par des sucres (ex : le maltose) ou des polyholosides (ex : l’amidon) et susceptibles de « charbonner » c’est à-dire conduisant à un résidu de carbone (appelé char) ;
  • c) enfin un agent gonflant de type azoté (par exemple la guanidine de formule (NH2)2 C=NH) qui par chauffage se sublime pour donner un dégagement gazeux d’ammoniac provoquant l’expansion du char. De même l’ammoniac libéré par la décomposition du phosphate d’ammonium participe au gonflement.

 

  • iv) des nanocomposites (de dimension inférieure à 100 nm) incorporés dans le polymère à des taux inférieurs à 10%, se sont révélés avoir des propriétés de tenue au feu remarquables : des argiles de type montmorillonite ou des nanoparticules d’oxyde de titane, de silice, des nanotubes de carbone par exemple ont été ainsi utilisés pour réduire de l’ordre de 50 % le risque d’inflammation du polymère (3).

Des normes de performances des RF ont été établies principalement par des mesures de calorimétrie : d’extinction de flamme (ISO 4589), d’inflammabilité (ISO 5660), de propagation de flamme (ISO 5658-2). Ces mesures sont utiles pour une approche prescriptive en particulier dans les secteurs du bâtiment, des transports publics (trains, avions, bateau…) mais aussi pour aider la recherche des causes des sinistres et valider les logiciels de simulation des incendies. Les mesures au calorimètre précisent le débit calorifique, soit le flux d’énergie thermique dégagée lors de la combustion du matériau. La technique consiste à mesurer la consommation en oxygène car la chaleur dégagée par la combustion est proportionnelle à la quantité d’oxygène correspondante. Le principe est simple : la combustion est provoquée dans un volume de contrôle et les effluents gazeux sont collectés via une hotte vers un conduit d’extraction dans lequel ils sont analysés (4).

Les RF peuvent dégager des fumées toxiques pour l’environnement et la santé humaine par migration et lessivage des produits lors de températures élevées et dans des atmosphères humides (5-6). Plus de 40 % des matières plastiques produits en Europe renferment des additifs de type RF. Leurs propriétés chimiques sont décrites sur le site européen ECHA. Parmi les 69 RF utilisés en Europe, 12 d’entre eux sont en cours de réévaluation de toxicité, notamment les dérivés bromés. Par ailleurs des RF contenus dans des polymères usagés sont triés par flottation (différence de densité) et détectés par transmission aux rayons X. Des unités encore au stade de pilote sont en cours pour fabriquer de nouveau des polymères ignifugés (7) ! Des normes de toxicité spécifiques sont éditées notamment dans les transports ferroviaires (8).

Pour obtenir des matériaux polymères possédant des RF, il faut créer des liaisons fortes entre le matériau polymère et les RF. Des travaux récents (2022) de M. Denis et al., de l’université de Montpellier, ont permis de mettre au point la synthèse d’un oligomère protégeant le bois, aux propriétés encore plus respectueuses de l’environnement. Il s’agit de la réaction d’un dérivé phosphoré fonctionnalisé avec un motif vinyle silane (de formule générale CH2 = CH -SiMe3) conduisant à une résine. Des peintures formulées avec ces résines modifiées ont été évaluées au calorimètre à cône et ont montré d’excellentes propriétés ignifugeantes : un bois recouvert d’un vernis, contenant 30% de cet oligomère, présente une réduction du dégagement de chaleur maximum de plus de 55 % (9)!

Jean-Pierre Foulon

(i) L’équation de réaction mise en jeu lors du chauffage s’écrit : (NH4)3PO4 → 3 NH3 (g) + H3PO4

 

Pour en savoir plus :
(1) Note sur la propriété qu'ont les matières salines de rendre les tissues incombustibles, de L.J. Gay-Lussac, Annales de Chimie et de Physique (1821), T. 18, p. 211-218 (consultable sur GALLICA), la bibliothèque numérique de la BNF et de ses partenaires
(2) La chimie des feux de forêt, de J.-C. Bernier, éditorial (30/08/2018), site Mediachimie.org
(3) Retardateurs de flamme et polymères des propriétés fonctionnelles, communication personnelle (2023) de S. Bourbigot et G. Fontaine (École Centrale-Lille) 
(4) La calorimétrie des procédés et de la sécurité, de F. Stoessel, L'Actualité chimique (Juin 2019) N°&nbs^p;441, p 28
(5) Retardateurs de flamme sur le site Wikipedia
(6) Propriétés dangereuses des retardateurs de flamme dans les plastiques, Rapport d’appui de l’INERIS (du 4 /12/2021)
(7) Site ECHA ( rechercher flame retardant)
(8) Réaction et résistance au feu des matériaux composant les trains EN 45545-2 et EN 45545-3 sur le site CREPIM
(9) Des résines alkydes hydrides aux propriétés ignifugeantes pour la formulation de revêtements, de M. Denis, L'Actualité chimique (Mai-Juin 2023) N° 484-485, p. 78
 

Crédit illustration : Hans/Pixabay

- Éditorial
mediachimie

Quel avenir pour l’énergie solaire ?

Alors que l’Agence internationale de l’énergie note qu’en 2022 les énergies éoliennes et solaires ont dépassé les 11% de l’électricité sur le plan mondial, une conférence de Daniel Lincot au Collège de France et un
...

Alors que l’Agence internationale de l’énergie note qu’en 2022 les énergies éoliennes et solaires ont dépassé les 11% de l’électricité sur le plan mondial, une conférence de Daniel Lincot au Collège de France et un rapport de l’Académie de technologie sur le photovoltaïque doivent attirer notre attention (1).

Les panneaux solaires

Pour rappel, l’énergie solaire via un panneau photovoltaïque s’appuie sur le fait que l’absorption de photons par un matériau semi-conducteur peut générer un courant électrique (i).

Parmi ces matériaux, le silicium est particulièrement bien placé car son « gap » correspond en énergie à celle du rayonnement solaire (2). Il reste à capturer les électrons excités pour en faire un courant électrique, avec un collecteur. Depuis 1955 et les premières cellules basées sur des jonctions P/N (ii) simples avec 6% de rendement on a d’abord amélioré le dopage avec des éléments comme le bore ou le phosphore. L’adjonction de grille pour drainer les électrons, la passivation de la surface et sa texturation pour réduire la réflexion de la lumière ont permis de monter le rendement entre 15 et 20%. L’innovation des hétéro-jonctions avec des dépôts de couches minces sur le silicium cristallin ont encore amélioré le rendement à 26%. Pour aller plus loin on pense à mieux absorber les photons dans l’ultra-violet ou ceux qui ont une grande longueur d’onde : on superpose alors à la cellule silicium d’autres cellules qui ont ces propriétés d’absorption, ainsi les cellules dites « tandem » peuvent atteindre 30 à 40% de rendement (3). La recherche est toujours très active en ce domaine avec les nouvelles pérovskites et les cellules organiques.

Pour l’instant face à la concurrence du silicium, la filière couche mince CIGS (iii) ou CdTe n’a pas encore réussi à s’imposer et ne dépasse pas 5% de la production. Cependant en France Solar Cloth produit des panneaux souples légers et performants puisque les modules en couche mince CIGS atteignent un rendement de 17% pouvant recouvrir les toits trop fragiles ou avoir des applications dans les tentes ou serres photovoltaïques (4).

Le silicium photovoltaïque

Pour fabriquer des panneaux photovoltaïques la chimie des matériaux est complexe et énergivore (5). On peut distinguer six étapes.

  1. Il faut réduire le sable (silice) par le carbone selon SiO2 + C = Si + CO2. Pour cela on utilise du coke à haute température, 1500 – 2000°C dans un four à arc.
  2. Le silicium est fondu à 1500 °C et par balayage de gaz on élimine la calcium et l’aluminium initialement présents dans le sable, pour obtenir le silicium métallurgique pur à 98%.
  3. Par attaque à l’acide chlorhydrique, HCl, on obtient le composé de formule SiHCl3 qui, une fois purifié par distillation à 300°C, est décomposé par le dihydrogène, H2, pour obtenir le silicium suivant la réaction SiHCl3 + H2 = Si + 3 HCl. Fondu sous vide on obtient du silicium pur à « cinq neuf » soit 99,999%
  4. Les lingots sont alors purifiés par zone fondue pour obtenir du « 7 neuf » (99,99999 %), par le procédé Czochralski). On amorce le bain fondu avec un germe et on étire un cylindre monocristallin (6).
  5. On découpe ensuite les « wafers (iv) » qui ont 0,2 mm d’épaisseur sur 20 cm et on opère les opérations de dopage dans des fours à atmosphère contrôlée.
  6. Viennent les opérations de surfaçage puis de montage avec les circuits de cuivre et insertion dans les cadres en aluminium et les protections en verre.

Toutes ces opérations exigent pas mal d’énergie, des réactifs chimiques, acide et bases, des quantités d’eau souvent pure de qualité électronique et inévitablement génèrent des effluents qui demandent à être traités.

La situation en France et en Europe

La France dispose de 17 GW de puissance photovoltaïque installée au premier trimestre 2023 et une production de l’ordre de 2,2% de l’électricité nationale. On est en retard sur le tableau de marche (20 GW en 2023 et 35 GW en 2028) ce qui imposerait d’installer au moins 3 GW par an (7).

Le problème est que si en 2022 les exportations de panneaux photovoltaïques (PV) représentaient 7% de l’excédent de la balance commerciale chinoise les importations de ces mêmes panneaux représentaient 2% du déficit commercial en France. Car la production de silicium de la silice aux wafers est à 95% aux mains de la Chine qui a investi des dizaines de milliards de dollars dans cette filière et qui investit encore dans les nouveaux produits hétérojonction et tandem. Le prix du Watt solaire s’est écroulé et le MWh est devenu compétitif dans les pays très ensoleillés, largement en dessous de 60 €. Cette redoutable machine chinoise a laminé l’industrie européenne du silicium. S’il reste un fondeur allemand Wacker et quelques fabricants de wafer notamment en Norvège, l’Europe n’est riche que de projets exigeants des milliards d’investissements pour espérer émerger sur ce marché en 2030. Et le pire c’est que ces modules PV sont fabriqués actuellement avec une énergie qui en Chine s’accompagne d’environ 600 g de CO2/ kWh, souvent issue de centrales thermique à charbon.

Des calculs très précis ont été faits sur les dépenses énergétiques des six stades de fabrication. La dépense énergétique la plus forte est paradoxalement le dernier stade, on n’est pas très loin de 3000 kWh par m² de modules. S’ils sont produits en Chine cela représente près de 1,8 tonnes de CO2 alors que s’ils étaient fabriqués en France cela ne représenterait plus que 180 kg, méritant mieux le label bas carbone. Sachant qu’un panneau PV produit en moyenne 300 kWh/m² par an on voit qu’il faut quelques années de production pour compenser l’énergie dépensée pour sa fabrication.

D’où l’intérêt en France et en Europe pour des solutions moins énergivores telles que les couches minces de CIGS développées par l’IPVF (l’Institut Photovoltaïque d'Île-de-France) à Saclay.

Les recommandations de l’Académie de technologie sont de dire que même si l’Europe est actuellement pieds et mains liés à un seul fournisseur, la Chine, comme le fut l’Allemagne au gaz russe, la situation est grave mais non catastrophique. Si au niveau européen on s’entend pour produire, du sable au wafer, des cellules de silicium européennes fabriquées avec une énergie plus propre, nous avons une carte à jouer en industrialisant au plus vite les technologies TOPcon (v) et Tandem à base de pérovskites pour avoir un avantage concurrentiel sur le rendement des cellules. Indépendamment, encourager l’industrialisation des panneaux couches minces qui peuvent s’avérer décisifs dans l’évolution du photovoltaïque et redonner une compétitivité européenne dans le PV bas carbone.

Enfin il faut, à l’instar du « Inflation Reduction Act » (IAR) des États-Unis, que l’Europe se donne les moyens d’un investissement colossal et des arrangements fiscaux pour une industrie capable de rivaliser avec les géants américains mais surtout chinois.

Jean-Claude Bernier
Juin 2023


(i) Le comportement électrique des semi-conducteurs peut être expliqué par le modèle de la théorie des bandes d’énergie. Dans ce modèle, les électrons dans l’état fondamental (état stable, non conducteur), sont répartis dans une bande d’énergie appelée bande de valence. Si un apport extérieur d’énergie est apporté au matériau, certains électrons peuvent absorber cette énergie et sauter dans une bande dite de conduction. Le matériau conduit alors le courant. L’écart d’énergie entre ces deux bandes est appelé bande interdite ou « gap ». Il faut donc que l’apport d’énergie extérieure soit supérieur à ce gap.

(ii) Pour en savoir plus sur les jonctions P/N : L’essentiel sur les cellules photovoltaïques sur le site du CEA

(iii) CIGS pour les éléments chimiques cuivre, indium gallium, et sélénium.

(iv) On appelle Wafer une « tranche » ou une plaque très fine de matériau semi-conducteur monocristallin.

(v) « Nous avons choisi la technologie TOPCon pour notre future gigafactory française de production de cellules solaires », L'Usine nouvelle, 23 mai 2022

 

Pour en savoir plus
(1) La solution photovoltaïque, D. Lincot, vidéo CNRS
Énergie solaire photovoltaïque et transition énergétique,  D. Lincot, leçon inaugurale au Collège de France - D. Lincot
Académie des technologies : pour le développement de productions industrielles de panneaux photovoltaïques en France et en Europe sur le site de l'IPVF
(2) La conversion photovoltaïque de l’énergie solaire, D Lincot, Revue du Palais de la découverte n° 344-345 (janvier-février 2007)
(3) Les nouvelles filières photovoltaïques, D. Lincot, vidéo CNRS
(4) Les filières photovoltaïques en couches minces et leurs perspectives d’application à l’habitat, D. Lincot, in La chimie et l’habitat (EDP Sciences, 2011)
(5) L’électronique, c’est de la chimie, P. Bray, O. Garreau et J.C. Bernier, fiche Chimie et en fiches… cycle 4, Mediachimie.org
(6) De la chimie au radar du rafale, Bertrand Demotes-Mainard, Colloque chimie et technologie de l’information (2013)
(7) La R&D au service de la décarbonation de l’industrie, J. Ph. Laurent, Colloque Chimie et énergie nouvelles (2021)
 

Crédit illustration : andreas160578/ Pixabay

- Événements
mediachimie

La chimie inquiète pour l’avenir ?

Fin avril une déclaration de France Chimie qui regroupe la plupart des industries chimiques en France a fait état de ses préoccupations face à l’inflation, à la crise de l’énergie et à la perte de compétitivité face aux
...

Fin avril une déclaration de France Chimie qui regroupe la plupart des industries chimiques en France a fait état de ses préoccupations face à l’inflation, à la crise de l’énergie et à la perte de compétitivité face aux États-Unis.

L’industrie chimique européenne très énergivore a subi de plein fouet l’inflation des matières premières et le coût de l’énergie qui ont entamé sa compétitivité. Elle a vu sa productivité chuter de 6,2% en 2022 (11% en Allemagne) avec des périodes d’arrêt de production. En France le secteur s’est montré plus résilient avec une baisse en volume de 3%. C’est le secteur amont de chimie minérale et de chimie organique qui a le plus reculé (10%) comme ses voisins européens, avec comme exemples l’ammoniac et le PVC lourdement handicapés par le coût du gaz et de l’énergie. Dans l’Hexagone ce recul a été compensé par le secteur aval où les spécialités n’ont baissé que de 1,9% alors que celui des savons, cosmétiques et produits d’entretien a lui au contraire progressé de 6% en 2022. Une des caractéristiques de la chimie française est que ce secteur de spécialités des parfums, cosmétiques et détergents représente près de 60% de la valeur ajoutée.

La chimie reste encore le premier secteur exportateur avec 81,5 milliards d’euros devant l’agroalimentaire et un solde positif de 9,5 milliards devant l’aéronautique. En 2022 les investissements ont progressé de 7% à plus de 6 milliards d’euros, portée par le plan de relance France 2030. Ce sont surtout des projets de croissance et plus de 250 projets industriels sur le recyclage notamment des plastiques, sur la transition énergétique et écologique (1) et sur les filières haute performance comme celles des batteries et l’hydrogène. La branche emploie 225.000 salariés (2) et renouvelle ses compétences avec une nouvelle croissance de ses effectifs en accueillant 25.000 nouveaux employés y compris les alternants (3) .

Les perspectives pour 2023 ne sont pas flamboyantes, l’inquiétude vient du plan de soutien aux industries vertes aux États-Unis. Lourd de 400 milliards d’aide publique « l’Inflation Reduction Act » (IRA) va augmenter encore le manque de compétitivité européen. Les exemples du PVC et surtout de l’hydrogène décarboné (4) sont très illustratifs. Alors qu’en Europe son prix est de l’ordre de 5 à 7 euros le kilo aux États-Unis revient à 2 euros et même moins s’il est issu de l’électrolyse alimentée en électricité par l’énergie nucléaire. France Chimie demande à ce que les aides dans les projets d’investissements soient accrues comme aux USA et pousse à une réforme du marché de l’électricité en Europe, seuls moyens de conserver une industrie chimique sur notre continent.

Jean-Claude Bernier
avril 2023

Pour en savoir plus
(1) Pour une industrie chimique propre et durable, C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny in La chimie et la sécurité des personnes, des biens, de la santé et de l'environnement, collection Chimie et... Junior, EDP Sciences, Fondation de la Maison de la Chimie (2016)
(2) Les chimistes dans l’industrie chimique, fiche Les Chimistes dans…, site Mediachimie.org
(3) Village de la Chimie - 10 et 11 février 2023 , site Mediachimie.org
(4) Les derniers résultats de la production de l’ hydrogène « décarboné », Zoom sur... , site Mediachimie.org
 

 

Crédit illustration : Image par Talpa de Pixabay