La synthèse asymétrique est très utilisée notamment dans la synthèse des médicaments. Ici le catalyseur est formé en utilisant un complexe ente un métal et des ligands greffés sur des polymères supramoléculaires qui adoptent une configuration hélicoïdale donc chirale. Cette technique permet de moduler la synthèse de tous les stéréoisomères possibles du produit d’une réaction, ceci est important en pharmacie lors des études de validation où l’on exige de tester tous les stéréoisomères.
Les produits de haute technologie de la vie quotidienne comme les ordinateurs, téléviseurs, téléphones portables… utilisent des métaux précieux et rares dans un environnement géopolitique parfois instable. L’indium et le lanthane sont des exemples proposés dans l’article. Des procédés d’électrodéposition du lanthane et de l’indium par utilisation de liquides ioniques sont ici présentés.
Dans le but d’utiliser des solvants plus durables dans la synthèse de principes actifs notamment dans le domaine de la pharmacie, l’industrie regroupe les douze principes de la chimie verte en six thèmes : énergie, technologie, veille, rejets, réaction, matière renouvelable. Le point d’ébullition est un indicateur d’utilisation industrielle. Des critères d’évaluation sont établis et un guide de solvants appropriés est proposé en conclusion.
La production de polyhydroxyalcanoates (PHA) montre ici les avantages de la biotechnologie par rapport aux procédés chimiques classiques pour la synthèse des polymères. La biodégradabilité des PHA est étudiée en particulier en milieu marin.
Dans cet article, les auteurs, biologistes, nous aident à comprendre l’évolution du virus, sa réplication et sa multiplication ainsi que le rôle unique de la cytosine en tant que coordinateur du métabolisme cellulaire.
La rétrosynthèse peut aussi être appliquée en biologie et notamment en ingénierie métabolique. Le problème consiste à trouver des réactions enzymatiques de façon à synthétiser des molécules cibles à partir de métabolites naturellement produits par les organismes châssis sur lesquels l’ingénierie est pratiquée. En biologie, il est aussi nécessaire de coder ces réactions et de rechercher les séquences enzymatiques capables de les catalyser. Pour ce faire, des méthodes d’apprentissage automatique issues de l’intelligence artificielle qui peuvent aussi être appliquées dans le cadre plus général de la rétrosynthèse organique sont utilisées.
Des méthodes d’énumération et de classement ainsi que leurs implémentations expérimentales pour la production de molécules bioactives dans des souches châssis tel qu'Escherichia coli sont présentées. Les méthodes de rétrosynthèse s’appliquent aussi à la construction de biosenseur où il est nécessaire de trouver les réactions enzymatiques capables de transformer une molécule à détecter en une autre pouvant agir sur l’expression des gènes. Des applications dans le cadre de la détection de polluants environnementaux, de la détection de biomarqueurs et de la construction de systèmes de détection multiplexes pouvant être utilisés comme outils de diagnostic sont expliquées.
Vidéo de la conférence (durée 37:48)
Retrouvez ici toutes les vidéos de ce colloque. Possibilité de les télécharger.
Les bactéries subissent les attaques permanentes de bactériophages ou phages. En retour, elles ont développé une impressionnante diversité de systèmes immunitaires pour résister à ces infections. Les CRISPR sont le système immunitaire adaptatif des procaryotes. Ils sont capables de mémoriser les infections passées en capturant des fragments d'ADN de phage puis d'utiliser cette mémoire pour détruire les séquences homologues grâce à l'action de nucléases (Cas) guidées par des petits ARN. Ces nucléases programmables sont au cœur de nombreuses applications technologiques, y compris pour la modification des génomes et le contrôle de l'expression génétique.
Guider les nucléases Cas pour couper le chromosome tue les bactéries de manière efficace. Cette propriété est utilisée pour développer des antibactériens spécifiques capables de cibler les gènes de virulence et de résistance aux antibiotiques.
Une autre application fascinante des systèmes CRISPR est l’utilisation du mutant catalytique de la protéine Cas9, connu sous le nom de dCas9. Cette protéine guidée par un petit ARN est capable de s’attacher à une séquence d’ADN cible sans la cliver et peu ainsi bloquer l’expression de gènes cibles de manière très efficace. Les mécanismes permettant de contrôler ainsi l’expression génétique de manière très fine sont étudiés et des méthodes permettant la réalisation de cribles à haut débits sont développés pour l’étude des génomes.
Vidéo de la conférence (durée 29:18)
Retrouvez ici toutes les vidéos de ce colloque. Possibilité de les télécharger.
Toutes les cellules de notre corps ont la même séquence d'ADN, cependant une cellule de neurone diffère d'une cellule de foie. Ainsi, bien qu’ayant le même ADN, les cellules ne lisent pas les mêmes séquences. Elles ont reçu le même livret d'instructions, mais ne lisent pas les mêmes chapitres !
Les modifications épigénétiques participent à indiquer à la cellule quels chapitres lire et donc quel gène exprimer. Principalement, l’épigénétique est constituée des modifications chimiques de l’ADN et des histones qui régulent l’accès à l’information génétique.
Les anomalies du profil épigénétique sont impliquées dans l'initiation et la progression du cancer, ainsi en les modifiant chimiquement il est possible de reprogrammer les cellules cancéreuses vers un état moins agressif. La méthylation de l’ADN est une modification épigénétique qui est dérégulée dans les tumeurs. Deux inhibiteurs ciblant cette méthylation sont actuellement utilisés en clinique pour traiter des leucémies.
Plusieurs stratégies chimiques pour développer de nouveaux inhibiteurs de la méthylation de l’ADN et des histones qui sont capables de déméthyler les promoteurs de gènes suppresseurs de tumeurs dans les cellules cancéreuses et réactiver leur expression sont présentées.
Vidéo de la conférence (durée 27:05)
Retrouvez ici toutes les vidéos de ce colloque. Possibilité de les télécharger.
La combrétastatine A-4 (CA-4), molécule naturelle isolée d’un saule d’Afrique du sud, est le chef de file des agents antivasculaires, détruisant sélectivement le réseau vasculaire tumoral et conduisant à une nécrose ischémique d’une tumeur solide. Sa prodrogue, la fosbrétabuline (CA-4P, First-in-class) pour le traitement de tumeurs neuro-endocrines et des glioblastomes multiformes, malgré un intérêt thérapeutique certain, souffre d’une instabilité chimique et d’effets indésirables dont une cardiotoxicité.
La conception d’agents antivasculaires stables et plus efficaces a permis d’identifier les isocombrétastatines, dont le chef de file est l’isoCA-4.2 Cette molécule, aux propriétés antivasculaires avérées, présente un profil biologique rigoureusement identique à celui de la molécule naturelle (CA-4) sans toutefois présenter le risque d’isomérisation. La preuve de concept de son efficacité antitumorale in vivo en monothérapie et en combinaison avec un agent cytotoxique a été démontrée. À ce titre, l’équipe a été lauréate du label « Équipe Labellisée 2014 » par la Ligue contre le cancer et d’un prix de valorisation de l’Université Paris-Sud.
Un travail important de chimie – pharmacochimie – biologie a été réalisé. La chimie de dérivés N-tosylhydrazones4 s’est révélée être un outil puissant et éco-compatible pour la synthèse des molécules cibles. Cette présentation décrit les outils organométalliques développés, l’évaluation biologique des molécules synthétisées et les perspectives qu’ouvre ce programme multidisciplinaire dans le cadre de thérapies moléculaires ciblées en mettant en évidence des profils (bio)moléculaires inédits.
Vidéo de la conférence (durée 35:52)
Retrouvez ici toutes les vidéos de ce colloque. Possibilité de les télécharger.
Cet article remarquable est issu de travaux actuels de recherche et peut être source d’une réflexion pédagogique sur la notion de chiralité et de la remise en cause de la non activité du racémique.
Après un rappel des définitions de Pasteur, on indique le premier exemple (1962) d’observation d’une activité optique par un matériau non énantiomorphe LiH(SeO3)2 : pour ce matériau on observe des pouvoirs rotatoires opposés selon différentes orientations ! Des schémas très clairs illustrent qualitativement l’activité optique sur des solides cristallins susceptible de chiralité.
Cela permet de comprendre pourquoi un même racémique peut être optiquement inactif dans certains arrangements et peut être optiquement actif dans d’autres. La recherche des arrangements dans lesquels un racémique peut être optiquement actif est basée sur l’analyse des 32 groupes ponctuels de symétrie cristallographiques.
Un exemple de cristal de fer qui s’arrange selon une hélice illustre enfin la notion de kryptoracémique.
Un racémique peut il être optiquement actif ? (lien externe)