- Éditorial
mediachimie

Quid du glyphosate ?

L’imbroglio politique à Bruxelles et à Paris sur le renouvellement d’autorisation de cet herbicide nourrit les polémiques qui s’étalent dans les journaux. Mais connaît-on bien en tant que chimiste cette molécule ? Le
...

L’imbroglio politique à Bruxelles et à Paris sur le renouvellement d’autorisation de cet herbicide nourrit les polémiques qui s’étalent dans les journaux. Mais connaît-on bien en tant que chimiste cette molécule ?

Le glyphosate est un composé de formule brute C3H8NO5P appelé N-(phosphonométhyl)glycine. C’est un acide organique analogue à un acide aminé naturel auquel on a ajouté un groupement phosphonate (C–PO–(OH)2). Sa synthèse industrielle n’est pas trop complexe et il a été fabriqué initialement par Monsanto qui en a possédé le brevet jusqu’en 1974. Plusieurs firmes depuis le fabriquent. Il est commercialisé sous le nom de « Roundup », l’herbicide systémique le plus utilisé dans le monde. Il comporte des adjuvants pour accroître sa solubilité et la pénétration dans la plante, notamment un surfactif (tensioactif) : le polyoxyéthylène amine (POEA) ou Tallowamine.

Les agriculteurs souhaitent la poursuite de son autorisation car ils utilisent ce produit pour éviter la pratique des labours profonds qui changent la structure des sols (1) au détriment de la biodiversité. Les ONG et les écologistes souhaitent au contraire son interdiction en tant que produit chimique et susceptible d’être cancérigène (2).

En fait dès 1997, une étude coordonnée par l’Agence américaine de la protection de l’environnement avait montré que ce n’était pas le glyphosate mais plutôt le POEA et ses produits de dégradation qui étaient toxiques pour les poissons et batraciens en milieu humide (3). Les études réglementaires nécessaires pour la mise sur le marché pour le glyphosate jusque l’an 2000 ne montraient aucun danger tératogène ou toxique pour l’homme.

C’est un rapport en 2015 du CIRC (Centre international de recherche sur le cancer), agence de l’OMS, qui a classé le glyphosate comme cancérogène probable pour l’homme à forte dose. On se rappellera que c’est ce même organisme qui a classé le café dans la même catégorie probable et la charcuterie comme cancérigène certain. En 2016, l’EFSA pour l’Europe concluait qu’il était improbable que cette substance soit cancérigène ; l’ANSES (4) pour la France, plus prudente, considérait que le niveau de preuves était insuffisant pour le classer comme cancérigène mais recommandait de ne plus l’additionner du POEA.

Passons sur les polémiques qui d’un côté accusent les organismes officiels d’avoir repris une étude faite par Monsanto et de l’autre côté accusent un rapporteur indélicat d’avoir changé les conclusions du CIRC de peu probable en probable ! Elles n’apportent rien à la clarté scientifique.

Le monde agricole pose alors la question des produits phytosanitaires alternatifs ? (5) Sont proposés les acides gras qui n’ont une efficacité que sur 14 jours, l’acide pélargonique (géranium) ou l’acide caprique proposé par Bayer qui ne fonctionnent que sur de petites surfaces et de coût assez élevé. Un autre herbicide de Monsanto, le Dicamba ou acide 2-méthoxy-3,6-dichlorobenzoïque renoue avec les organochlorés encore bien pires et qui fait déjà l’objet aux États-Unis de nombreuses plaintes d’agriculteurs. Restent l’huile de coude pour le sarclage et l’arrachage à la main, difficilement compatibles avec la désertification rurale.

C’est le vrai problème de l’agriculture moderne, appelée à nourrir des milliards d’êtres humains et confrontée à l’usage de produits respectueux de l’environnement et de la santé alimentaire (6) et bien sûr de ses rapports avec la chimie. Si depuis 40 ans le nombre de molécules pesticides, herbicides et insecticides a été réduit des 2/3 et si les micropolluants des eaux se sont réduit de 60% (7) avec une belle amélioration de la chaine alimentaire, c’est que les organismes de réglementation et la recherche de solutions (8) ont travaillé ensemble mais l’on peut encore faire des progrès.

Jean-Claude Bernier
Novembre 2017

Quelques ressources pour en savoir plus :

1) Biogéochimie et écologie des sols (330)
2) Chimie et santé : risques et bienfaits (307)
3) Biochimie naturelle et traitement de l’eau : de la chimie des écosystèmes et des cocktails… (284)
4) Le défi posé aux chimistes pour la protection de la santé et de l’environnement. Le point de vue de l’ANSES (1099)
5) La chimie en agriculture : les tensions et les défis pour l’agronomie (313)
6) Réglementation de l’évaluation des risques alimentaires : la place de la chimie (285)
7) Les micropolluants dans les écosystèmes aquatiques : enjeux de la directive eau (1101)
8) La nature pour inspirer le chimiste : substances naturelles, phytochimie et chimie médicinale (292)
 

- Éditorial
mediachimie

L’Energy Observer, un formidable laboratoire flottant

L’Energy Observer, un ancien catamaran de course avec lequel l’australien Peter Blake avait gagné le trophée Jules Verne en 1994, a été transformé en 2016 en un superbe bateau de démonstration des énergies renouvelables,
...

L’Energy Observer, un ancien catamaran de course avec lequel l’australien Peter Blake avait gagné le trophée Jules Verne en 1994, a été transformé en 2016 en un superbe bateau de démonstration des énergies renouvelables, bourré d’innovations en chimie. Long de 30,5 mètres et large de 13 mètres, son capitaine, Victorien Erussard a entamé en août 2017 le tour du monde en 6 ans et 101 escales sans émettre un litre de gaz à effet de serre (1). Autonome en énergie, ce bâtiment accumule toutes les récentes technologies permises par l’innovation en chimie.

Cela commence par les 130 m2 de panneaux solaires (2) spécialement étudiés par le CEA–Leti avec des cellules bifaces à hétérojonction dont le rendement approche de 22% (3). L’ensemble des cellules couvre le pont, elles sont revêtues d’une couche antidérapante et donnent une puissance crête de 21 kW. L’électricité solaire générée est stockée dans des packs de batteries ion-lithium spéciaux, apportant une réserve d’énergie de 106 kWh (4). La propulsion se fait par deux hélices mues par deux moteurs électriques à fort rendement de puissance de 41 kW chacun et tournant à 3000 tours/minute capable de faire avancer ce navire en composite (5) à une vitesse comprise entre 10 et 15 nœuds. L’astuce de ces moteurs c’est qu’ils sont réversibles en hydrogénérateurs et lorsque le bateau court sur son erre, porté par le vent ou un courant, les hélices engendrent un courant et une puissance de 2x2,5 kW qui peut recharger les batteries. Il y a aussi une autre source d’énergie : sur le pont une trappe s’ouvre sur un cerf-volant automatisé qui sous le vent tire le bateau en augmentant sa vitesse et en réduisant les dépenses d’énergie. S’y ajoute une pile à hydrogène, aussi source d’énergie. En effet ce navire labo dispose d’un électrolyseur (6) qui dissocie l’eau en oxygène et hydrogène. Ce dernier est récupéré sous une pression de 30 bars puis compressé à 150 bars et stocké dans 8 réservoirs pour donner une réserve de 62 kg d’H2. On sait que l’hydrogène est un vecteur d’énergie (7) à travers la pile à combustible qui produit de l’électricité à partir de la recombinaison H2 + O = H2O (8). Pour compléter les sources, deux petites éoliennes à axe vertical peuvent fournir un appoint de 2 kW. On comprend dès lors qu’avec toutes ces technologies d’avant-garde ce « Solar Impulse des mers » (9) aura une autonomie énergétique complète. S’y ajoutent un désalinisateur d’eau de mer qui fonctionne en osmose inverse (10) et dans le dôme de navigation une électronique embarquée (11) et un super logiciel informatique connecté, optimisant la navigation, prenant en compte non seulement l’état de la mer et du vent mais aussi la nébulosité et la gestion de l’énergie.

L’Energy Observer fait route vers la Méditerranée et doit être début décembre en escale à Marseille. Les élèves du Lycée Galilée de Gennevilliers suivent attentivement cette odyssée, ils sont en ce moment à la Cité des sciences et de l’industrie pour se relayer devant une maquette et un démonstrateur d’électrolyse produisant de l’hydrogène et ainsi expliquer les technologies du bateau aux plus jeunes. Ils seront également en décembre à l'escale de Marseille.

Bon vent à cette nouvelle « calypso des mers »  ! (12)

Jean-Claude Bernier
Octobre 2017

Quelques ressources pour en savoir plus :

1) Le changement climatique (Chimie et… junior)
2) Les panneaux solaires (vidéo, 2 :34)
3) Un exemple d’énergie renouvelable : panneaux solaires photovoltaïques
4) L’énergie : stockage électrochimique et développement durable
5) Chimie et construction navale
6) Production d’hydrogène par électrolyse de l’eau sur membrane acide
7) L’hydrogène, vecteur de la transition énergétique
8) Fonctionnement de la pile à combustible (vidéo, 1:30)
9) Solar Impulse 2 et la chimie
10) D’eau et de sel (vidéo, 14:00
11) Toujours plus petit ! (Chimie et… junior)
12) Site du projet Energy Observer : http://www.energy-observer.org
 

- Éditorial
mediachimie

Alerte aux nano !

Depuis près de vingt ans le « nanomonde » s’est développé. Rappelons d’abord qu’un nanomètre (nm) est mille fois plus petit que le micromètre et qu’une particule de 10 nm est 50 000 fois plus petit que l’épaisseur d’un de
...

Depuis près de vingt ans le « nanomonde » s’est développé. Rappelons d’abord qu’un nanomètre (nm) est mille fois plus petit que le micromètre et qu’une particule de 10 nm est 50 000 fois plus petit que l’épaisseur d’un de vos cheveux. Si les microprocesseurs de nos smartphones sont de plus en plus puissants, c’est que par lithographie on grave les transistors à moins de 20 nm (1). De même les microcapteurs de CO ont des composants à dimensions nanométriques (2), la télévision HD utilise aussi des « quantum dots » nanométriques (3) et même en thérapie les nanomédicaments sont un espoir pour les traitements du cancer (4).

Cet été la presse s’est fait l’écho d’une enquête très médiatisée sur la présence de nanoparticules de TiO2 dans de nombreux aliments, plats cuisinés, pâtisseries, bonbons… Une publication de l’université de Séoul en mai attire aussi l’attention sur des poudres de carbone émises par les imprimantes 3D (5). Ces annonces peuvent semer le trouble dans l’agroalimentaire, chez les consommateurs et aussi chez les usagers d’imprimantes 3D. Pour ces dernières, qui se multiplient dans le grand public, la fabrication additive se fait le plus souvent par fusion de fils de thermoplastiques (PLA - acide polylactique, ABS - acrylonitrile butadiène styrène) à des températures de 150°C à 200°C qui peuvent permettre l’émission de vapeurs mais probablement pas de nanoparticules de carbone, d’autant que maintenant la plupart des imprimantes sont capotées. Plus sérieux est le cas des imprimantes 3D industrielles qui se multiplient chez les fabricants de pièces complexes à partir de poudres métalliques déposées en couches successives fondues par laser. La sécurité des opérateurs est assurée par des installations qui satisfont aux normes relatives aux locaux à pollution spécifique où les concentrations moyennes en poussière totale et alvéolaire de l’atmosphère ne doit pas dépasser 10 et 5 mg/m3 d’air. Les rangées d’imprimantes bien fermées sont disposées dans des locaux ventilées avec leurs propres alimentations de poudres, étanches, limitant les manipulations individuelles et obéissant aux normes (6).

À cet égard, il faut rappeler qu’il y a un domaine où les normes n’ont aucun pouvoir, il s’agit des nano-objets relevant de la pollution ambiante : nanoparticules de TiO2 des peintures, des cosmétiques, des nanosilices, des particules de CeO2 issues de pots catalytiques, etc…, tous objets non manufacturés de l’ordre de 20 000 à 30 000 nano-objets par mm3 (7). Cette situation relativise l’annonce médiatique des nanoparticules de TiO2 de l’additif alimentaire E 171. Car de plus, au-delà du « scoop », il faut rappeler que les autorités européennes par l’EFSA ont largement étudié la toxicité de cet additif depuis plusieurs années. Il comporte entre 0 et 39% de particules inférieures à 100nm et d’après cette agence, « les expositions à l’E171 ne sont pas de nature à entrainer un risque sanitaire ». Mais en France, avec le principe de précaution, l’ANSES a été alerté par divers ministères, suite à une publication (Bettini et al., dans Scientic Reports) sur d’éventuelles lésions du colon chez des rats soumis à un régime riche en nanoparticules de TiO2. L’expertise collective diligentée aussitôt a rendu ses avis en avril, après analyse des protocoles d’essais et audition des auteurs. La conclusion du panel d’experts ne remet pas en cause l’avis initial européen de l’EFSA, elle constate aussi que les réactions inflammatoires intestinaux ne sont que difficilement étayées et que les résultats ne permettent pas de conclure à une génotoxicité. L’ANSES rappelle par ailleurs que cela fait plus de dix ans que l’agence travaille sur les effets biologiques des nano-objets et qu’elle souhaite que des protocoles d’essais rigoureux et normés soient mis en place en ce domaine (8).

Jean-Claude Bernier
Ocotbre 2017

Quelques ressources pour en savoir plus :

1) Chimie et nanolithographie (vidéo, 8:20)
2) Micro-capteurs à semi-conducteurs pour la détection de CO (conférence)
3) La chimie s’invite dans la guerre des télés
4) Les nanomédicaments : une approche intelligente pour le traitement des maladies sévères
5) La 3D, troisième révolution industrielle ?
6) Production et utilisation des nano-objets : évaluation et gestion des risques
7) Les nano-objets : un avenir prometteur sous contrôle (chimie et… junior)
(8) Le défi posé aux chimistes pour la protection de la santé et de l’environnement. Le point de vue de l’ANSES
 

- Éditorial
mediachimie

Les peroxydes organiques et l’ouragan Harvey

L’ouragan Harvey a ravagé la semaine dernière la côte est du Texas aux États-Unis. Il a fait au moins 33 victimes et il a aussi inondé une zone fortement industrielle près de Houston. C’est là que plusieurs sites de
...

L’ouragan Harvey a ravagé la semaine dernière la côte est du Texas aux États-Unis. Il a fait au moins 33 victimes et il a aussi inondé une zone fortement industrielle près de Houston. C’est là que plusieurs sites de pétrochimie comme les raffineries ont dû s’arrêter noyées par les eaux mais des plateformes chimiques ont aussi souffert. C’est le cas de l’usine ARKEMA de Crosby au nord-est de Houston où plusieurs explosions suivies de dégagements de fumées ont été observées jeudi 31 août et vendredi 1er septembre. Les responsables de la filière américaine du groupe nous informent d’une situation jamais vécue, où 1,80 mètre d’eau dans l’usine ont fait sauter les alimentations électriques d’urgence et de secours. En conséquence les conteneurs de peroxydes organiques n’étaient plus réfrigérés et ont brûlé.

Qu’est-ce qu’un peroxyde organique ? Les peroxydes organiques sont des substances organiques liquides ou solides qui contiennent la structure bivalente -O-O- et qui, en tant que telles, sont considérées comme des dérivés du peroxyde d’hydrogène dans lesquels un ou les deux atomes d’hydrogène ont été substitués par des radicaux organiques. Ils dérivent presque tous d’une formule

et ils sont caractérisés par des doubles liaisons C=O et des ponts d’oxygènes greffés entre des radicaux carbonés. L’un des plus simples est le peroxyde d’hydrogène H-O-O-H ou eau oxygénée (1), antiseptique et comburant dans les fusées, mais aussi agent de synthèse oxydant en chimie organique. Les peroxydes sont utilisés en pharmacochimie (2) et aussi comme plastifiants (3), dans la fabrication des plastiques et des composites fibreux (4). Il y a plus de dix types de peroxydes organiques, citons le peroxyde de dibenzoyle utilisé comme agent thérapeutique contre l’acné et agent de blanchiment comme le peroxyde de lauroyle dans l’industrie alimentaire (5). D’autres peroxydes comme ceux des carbonates, de cétones et d’esters sont utilisés dans les polymères et diverses industries y compris cosmétiques (6), où l’on a besoin d’un réactif d’oxydation.
Ce sont des composés à la fois oxydants et comburants et donc instables car ils réunissent dans un même composé du carbone et de l’hydrogène (comburants) qui ne demandent qu’à réagir avec l’oxygène (oxydant) pour donner du CO2 et H2O. Ils se décomposent facilement sous l’action de la chaleur. La montée en température au-dessus de la « température de décomposition accélérée » (SADT en anglais) entraine une décomposition exothermique avec possibilité d’auto-accélération et auto-combustion d’où explosion (7).

C’est pourquoi on les stocke dans des containers refroidis où la température doit rester en général au-dessous de 20 °C. La panne d’alimentation électrique a provoqué la décomposition et la combustion des containers sur le site de Crosby, malgré toutes les précautions prise par les services de l’usine en doublant les circuits de réfrigération (8). La direction locale d’ARKEMA a décidé de déclencher l’incendie des produits restants en accord et liaison avec le « Chemical Safety Board », l’agence fédérale de sûreté chimique afin de mettre en sécurité le site (9).

Jean-Claude Bernier
Septembre 2017

Quelques ressources pour en savoir plus :

1) Découverte du peroxyde d’hydrogène (eau oxygénée)
2) Le vieillissement cutané : prévention et réparation
3) L’analyse des peintures automobiles
4) Matériaux composites à matrice polymère
5) Alimentation : les différentes facettes de la qualité
6) La chimie au cœur de l’innovation en parfumerie-cosmétique : le contexte économique et réglementaire et les défis de la recherche
7) Une enquête explosive
8) Apport de REACH dans l’amélioration de la connaissance des dangers des substances pour Arkema
9) Du produit aux installations : apport des sciences chimiques pour renforcer la sécurité
 

- Éditorial
mediachimie

Elon Musk au secours des énergies renouvelables

Le point faible de l’électricité produite par les éoliennes ou les panneaux photovoltaïques (1), c’est l’intermittence. Les media nous ont habitués aux abus de langages « la puissance de ce parc photovoltaïque ou de cette
...

Le point faible de l’électricité produite par les éoliennes ou les panneaux photovoltaïques (1), c’est l’intermittence. Les media nous ont habitués aux abus de langages « la puissance de ce parc photovoltaïque ou de cette ferme d’éoliennes permet d’alimenter une ville de 50 000 habitants » … Et bien non ! Que feront ces malheureux la nuit ou les jours nuageux et sans vent, privés de chauffage, d’éclairage, de téléphone et d’ascenseur ? Se pose donc le problème de stocker l’électricité (2) non pas à l’échelle de quelques watts pour votre smartphone mais à quelques centaines de mégawatts pendant au moins 24 heures.

Elon Musk, le médiatique président de TESLA, a saisi l’opportunité qui se présente en Australie-Méridionale, frappée de black-out répétitifs dus à l’arrêt de centrales au charbon, à l’excès de renouvelables et à la désorganisation de son réseau par des pluies diluviennes (3). Les industries du sud de l’Australie, et en particulier les zones portuaires d’Adélaïde et de Perth, réclament à cor et à cri la construction d’une centrale thermique à gaz pour les alimenter. Suite à un appel d’offre du gouvernement méridional, Elan Musk leur propose d’installer un stockage de 100 MW (129 MWh) à Jamestown près du parc éolien de Hornsdale géré par le français Neoen (4), utilisant sa technique Powerpack, composée de 788 armoires comportant chacune 16 batteries lithium-ion (5) avec leurs composants électroniques de charge/décharge et onduleurs programmés. Il propose au Premier ministre du gouvernement de le lui livrer en 3 mois, d’ici décembre 2017, au prix de 250 $ le KWh (ce qui fait tout de même 33 millions de $) et gratuitement s’il ne tient pas les délais ! On connaissait déjà ses batteries Powerwall de Tesla pour les particuliers désireux d’autoconsommer leur électricité solaire de 6 à 14 KWh mais là, il franchit un sacré palier. Il ne craint pas de dire que c’est la plus importante unité de stockage en batteries au monde ; ce n’est pas tout à fait exact car le chinois Rongke Power et l’américain UET construisent près de Dalian en Chine un ensemble de batterie flux vanadium (redox) d’une capacité de 200 MW (6). En dehors de la performance technologique, on peut réfléchir au prix fourni en prenant une durée de vie de 3 ans et 1000 cycles décharges/recharges qui met le prix à 0,25 € du KWh stocké. L’investissement pour un terawatt-heure (TWh) serait suivant cette technologie de 250.109 soit 230 milliards d’euros de 250.109 dollars, soit 230 milliards d’euros, et immobiliserait 300 000 tonnes de lithium. Calculez combien il faudrait pour stocker la moitié de la production photovoltaïque française, 4,5 TWh. C’est sûr, même en baissant les prix et en améliorant la durée de vie ce n’est pas encore la solution (7).

Jean-Claude Bernier
Août 2017

Quelques ressources pour en savoir plus :

(1) Un exemple d’énergie renouvelable : les panneaux solaires photovoltaïques
(2) Matériaux pour conversion et stockage de l’énergie : avancées et challenges
(3) Le challenge de l’électricité verte
(4) Stockage de l’électricité : élément clé pour le déploiement des énergies renouvelables et du véhicule électrique
(5) Piles à combustible et batteries au lithium
(6) Les enjeux de la chimie dans la production d’électricité
(7) L’hydrogène qui valorise les énergies renouvelables (vidéo 7:36)
 

Grenfell Tower burning, pictured at 04:43 BST, 14 June 2017
- Éditorial
mediachimie

L’isolation thermique mise en cause à Londres

Les images tragiques de l’incendie de la tour Grenfell à Londres dans la nuit du 13 au 14 juin ont ému et horrifié nombre de téléspectateurs. En tant que chimistes nous avons été interpellés par l’observation des flammes
...

Les images tragiques de l’incendie de la tour Grenfell à Londres dans la nuit du 13 au 14 juin ont ému et horrifié nombre de téléspectateurs. En tant que chimistes nous avons été interpellés par l’observation des flammes qui se propageaient très rapidement en façade de cette tour et des dégagements de fumées inhabituels issus du bardage.

Il semblerait que ce soit l’isolation thermique par l’extérieur (ITE) du bâtiment qui soit en cause bien qu’elle soit l’une des meilleures méthodes d’isolation (1). En effet les travaux de rénovation thermique de la tour réalisés par le bailleur londonien ont consisté à fixer en façades des panneaux faits de deux plaques d’aluminium pré-laquées thermocollées de part et d’autre d’une âme de quelques centimètres d’épaisseur de matière isolante comme le polyéthylène (PE) (2). Ces panneaux bien rigides offrent plusieurs avantages : esthétiques, faible poids, résistance à la corrosion et aux intempéries et bien sûr coefficient d’isolation thermique excellent (3).

Ces panneaux qui constituent le bardage des façades de la tour Grenfell mis en place en 2015 sont de type Reynobond® fabriqués par Arconic une société américaine filiale d’ALCOA, un géant de l’aluminium, et située à Merxheim dans le Haut-Rhin en France. Cette société livre aux entreprises de construction plusieurs types de « sandwiches » (4) :

  • une entrée de gamme où l’âme est constituée de polyéthylène expansé (PE) entre les deux plaques d’aluminium, qui est recommandée par le constructeur pour les immeubles de faible hauteur ;
  • des produits plus sophistiqués comportant des versions dites FR (Fire Retardant) comportant des retardateurs de flammes (5) qui peuvent être des hydroxydes métalliques ou des dérivés halogénés ;
  • des produits plus sophistiqués ignifugés avec des polymères autres que le PE (polyéthylène) ou PS (polystyrène) comme le polyisocyanurate et ignifugé, qui ont de meilleures résistances au feu pour des immeubles de plus grande hauteur.

Alors que s’est-il passé ? Lors du chantier de rénovation, l’entreprise londonienne a-t-elle utilisé un produit entrée de gamme au lieu du Reynobond® FR ? La présence d’une lame d’air entre le panneau extérieur et l’isolant polymère en façade a-t-elle joué le rôle d’une cheminée accélérant la combustion ? Si les isolants comme le polyisocyanurate ou ceux avec un retardateur de flamme ont des temps de résistance à l’incendie supérieurs à ceux du polystyrène expansé, il n’en reste pas moins que la laine de roche compressée est préférable dans cette application particulière. En effet les essais de tenue au feu menés au CNPP (Centre national de prévention et de protection) de Vernon soulignent que le matériau a tendance à générer des fumées nocives notamment de l’acide cyanhydrique HCN et du monoxyde de carbone CO. De plus, dans ce type d’incendie où la température peut atteindre près de 1000°C, les plaques d’aluminium dont la température de fusion est de 660°C s’effondrent (6).

L’isolation de l’habitat et surtout des tours exige un cahier de charges très strict qui doit prendre en compte toutes les caractéristiques chimiques, thermiques et mécaniques des matériaux (7), sinon des incendies meurtriers peuvent encore se reproduire.

Jean-Claude Bernier
Juillet 2017

Quelques ressources pour en savoir plus :

(1) L’isolation dans l’habitat : la chimie pour ne pas gaspiller de calories !
(2) Le polyéthylène (produit du jour de la SCF)
(3) La chimie au service de l’efficacité énergétique : comment concevoir un habitat performant ?
(4) Matériaux composites à matrices polymères
(5) Le textile, un matériau multifonctionnel
(6) Sciences et techniques séparatives pour scènes de crimes complexes. Application à la détection des accélérateurs d’incendie
(7) Vivre en économisant cette « chère » énergie
 

- Éditorial
mediachimie

Au secours ! Le naturel revient au galop

Les chaînes de télévision françaises peuvent-elles être accusées de mise en danger d’autrui ? Plusieurs dermatologues l’auraient bien voulu après les émissions de début juin, dont un journal télévisé, commentant un numéro
...

Les chaînes de télévision françaises peuvent-elles être accusées de mise en danger d’autrui ? Plusieurs dermatologues l’auraient bien voulu après les émissions de début juin, dont un journal télévisé, commentant un numéro spécial d’une publication bien connue des consommateurs sur les produits cosmétiques. Les journalistes de France 2 et de France 3 dans leur élan « politiquement correct » vantaient le « do it yourself » bio avec les produits naturels rejoignant la mode du « home made » venant des États-Unis et la croyance que toute substance venant de la nature est bénéfique pour la santé.

Cette mode des produits naturels oppose le naturel à l’artificiel, le bio à la chimie. Mais qu’est-ce qu’un produit naturel et qu’est-ce qu’un produit artificiel ? Tous deux possèdent le produit actif qui soigne dans un médicament ou protège dans un cosmétique.

Pour survivre, la plante ou l’arbre ont développé une machinerie moléculaire (1) pour résister au froid ou la chaleur et sélectionné des toxines pour leur défense et une chimie de photosynthèse pour se nourrir. Le principe actif est alors mélangé à des milliers d’autres molécules et il est difficile de le « pêcher », de l’isoler et de le caractériser. La chimie par synthèse ou hémisynthèse (2) fait réagir un nombre limité de réactifs. Elle dispose de moyens analytiques performants qui lui permettent d’isoler un produit actif avec le minimum d’impuretés et bien caractérisé.

Le second point important pour l’application du principe actif (3) est la dose, sa quantité et sa fréquence d’application. Il est indispensable d’avoir une parfaite maîtrise de la pureté du produit administré et de la méthodologie de son dosage. Ce qui fait la différence entre un médicament et le poison, c’est « la dose » ! (4)

Les exemples des huiles essentielles (HE) qui sont très à la mode sont édifiants. Très concentrées elles sont souvent un cocktail de molécules pas toujours bienfaisantes. Sont considérées comme toxiques les huiles essentielles de sauge, d’hysope, de thym, d’eucalyptus et de camphre. L’huile essentielle de cannelle, riche en thymol, attaque le foie et l’intestin, une goutte tue un chat ! Les centres anti-poison et de santé relèvent chaque année des intoxications dues aux végétaux, des eczémas de contact, des dermites par irritations ou allergies et des phototoxicités (5). Ce qui est en cause dans la fabrication et la formulation des « crèmes», c’est à la fois la chaîne d’approvisionnement des produits et la mauvaise conservation.
L’industrie des cosmétiques et des parfums dispose de moyens analytiques (6) et technologiques de synthèse et de séparation de molécules par extraction, distillation, entraînement par micro-fluidique… Contrôlés par les DREAL (Direction Régionale de l’Environnement de l’Aménagement et du Logement), les fabricants disposent de moyens analytiques les plus modernes et d’un contrôle qualité rigoureux. L’innovation (7) et la recherche sont actives (8), par exemple sur la micro-encapsulation, les bioactifs en liaison avec le microbiote de la peau, les parfums sans alcool… (9). On est loin du coin cuisine individuel et des conseils hasardeux.

Jean-Claude Bernier
Juin 2017

Quelques ressources pour en savoir plus :

(1) L’analyse végétale depuis le XVIe siècle
(2) Les produits phytopharmaceutiques pour une alimentation de qualité pour tous
(3) Chimie et santé : risques et bienfaits
(4) Chimie et poisons
(5) L’aventure des produits inoffensifs : une approche pionnière de la sécurité en cosmétique
(6) Techniques analytiques et chimie de l’environnement
(7) Vision d’avenir de l’industrie dans le domaine des parfums, arômes, senteurs et saveurs
(8) Nouveaux actifs et nouveaux ingrédients
(9) La chimie au cœur de l’innovation en parfumerie-cosmétique : le contexte économique et réglementaire et les défis de la recherche
 

- Éditorial
mediachimie

La petite balle jaune

Les Internationaux de France à Roland-Garros ont entamé leur seconde semaine et les champions de tennis n’arrêtent pas de martyriser la petite balle jaune. C’est une petite sphère de 57 grammes et de 6,5 centimètres de
...

Les Internationaux de France à Roland-Garros ont entamé leur seconde semaine et les champions de tennis n’arrêtent pas de martyriser la petite balle jaune. C’est une petite sphère de 57 grammes et de 6,5 centimètres de diamètre. Lors des 4 millièmes de seconde de contact avec le tamis en fibres synthétiques (1) de la raquette en matériau composite (2), elle se transforme en une galette de 2 centimètres d’épaisseur, il faut donc qu’elle ait une fameuse élasticité. C’est pourquoi le cœur de la balle de tennis est constitué de deux hémisphères de caoutchouc naturel (3) d’épaisseur de 2 à 6 millimètres, vulcanisé avec du soufre et mélangé à chaud avec des durcisseurs (4). Après collage de ces deux coques avec un adhésif élastomère (5) on les revêt d’une colle liquide pour fixer les bandes de feutre à base de fibres de coton, laine et nylon (6). Ce feutre est aussi traité avec un revêtement hydrophobe pour éviter qu’il s’imprègne d’eau, il est de couleur jaune fluo car c’est la couleur optique la mieux visible à l’œil nu et à la télévision (7).

Pour être homologué, la balle doit répondre aux spécifications de la Fédération Française de Tennis. Lâchée d’une hauteur de 100 inches (2,54 m), la balle de compétition doit rebondir à une hauteur comprise entre 135 et 147 centimètres. Pour donner plus de dureté et plus de rebond les fabricants mettent sous pression l’intérieur de la balle soit en utilisant un liquide comme le formaldéhyde (8) ou un sel d’ammonium qui libèrent un gaz lors du collage des deux demi-coques. L’enveloppe n’est pas totalement étanche et les balles peuvent perdre leur propriété en fonction du temps. Dans les grands tournois les balles sont changées tous les neuf jeux par précaution. C’est plus pour parer à l’usure du feutre. A Roland-Garros, c’est plus de 60 000 balles qui sont utilisées ; elles se retrouvent partiellement recyclées en revêtement de sols de salles de sports (9). La force transmise par la raquette propulse les balles à des vitesses incroyables. Les spectateurs regardent souvent la valeur de ces vitesses des balles d’engagement sur le tableau d’affichage. Ce sont des radars doppler (10) qui calculent la vitesse. Dans le court central ils sont disposés au-dessus des bâches vertes derrière les joueurs, ils sont de même type que ceux qui contrôlent la vitesse des automobiles. Le record (11) est actuellement détenu par un obscur joueur Samuel Groth lors d’un tournoi en Corée du sud à 263 km/h ! Pas étonnant que lors d’un « ace » on peine à suivre la petite balle jaune à la télé !

Jean-Claude Bernier
Juin 2017

Quelques ressources pour en savoir plus :
(1) Les matériaux de la performance
(2) Les matériaux composites dans le sport
(3) L’élasticité du caoutchouc
(4) Le caoutchouc synthétique
(5) La chimie et le sport autour du monde
(6) La grande aventure des polyamides
(7) La chimie crée sa couleur… sur la palette du peintre
(8) Formaldéhyde (produit du jour de la SCF)
(9) Une rentrée olympique
(10) Les radars des avions Rafale
(11) Technologie et performance sportive
 


 

- Éditorial
mediachimie

Podium pour une NanoCar Race ébouriffante

La « Nanocar race » la course des plus petites voitures du monde s’est déroulée à Toulouse les 28 et 29 avril derniers, comme annoncée sur Mediachimie.org (1). Six équipes internationales ont participé à la course, 4
...

La « Nanocar race » la course des plus petites voitures du monde s’est déroulée à Toulouse les 28 et 29 avril derniers, comme annoncée sur Mediachimie.org (1). Six équipes internationales ont participé à la course, 4 présentes sur place et 2 hors de nos frontières. Pour les chercheurs et techniciens du CEMES (CNRS) de Toulouse qui accueillaient cette première mondiale, la préparation a été un tour de force.

Rappelons en effet que la piste est constituée d’une face d’un monocristal d’or ou d’argent sous ultra-vide et à basse température. Chaque voiture préparée par les équipes concurrentes est constituée d’une molécule complexe de type « machine moléculaire » (2) présentant des groupements chimiques qui ressemblent à des « roues » ou des « patins » et qui peuvent glisser sur la surface sous l’impulsion d’un mini courant électrique. Les électrons de ce courant sont apportés par une pointe qui suit la molécule et qui se ballade à quelques picomètres de la piste (le milliardième de millimètre, 500 millions de fois plus petit qu’un cheveu !). À cette échelle il faut exclure toute vibration et le bâtiment où se passait l’épreuve, le « Picolab », a été bâti spécifiquement sur des fondations élastiques et la dalle qui supporte les enceintes sous vide et les microscopes à effet tunnel est de plus flottante.

Après deux jours de course la première équipe est l’équipe suisse de l’université de Graz. Le « Swiss nano dragster », la voiture-molécule gagnante synthétisée par les chimistes de Bâle ,comporte quatre cycles phényles, elle est du même type que celle utilisée dans les cellules solaires organiques. Très petite molécule, elle a l’aspect d’un char triangulaire avec trois patins et a glissé sur la surface métallique à la vitesse moyenne de 20 nm/h. Les deuxièmes sont les autrichiens avec la « dipolar races » qui a parcouru la plus grande distance 450 nm. Les allemands « Wind Mill » et les américains « Ohio bobcat nano wagon », troisièmes et quatrièmes, ont eu des problèmes de départ. Quant aux Japonais et aux Français, ils ont été victime de « crash ».

Hors l’aspect ludique de cette course de haute technologie les participants ont souligné la très belle coopération internationale qui a eu des retentissements scientifiques et médiatiques dans tous les pays. Le suivi « live » a permis aux internautes de voir comment chimistes et physiciens savaient manipuler des molécules ou atomes individuels. Déjà, chimistes et biochimistes ont mis à profit la nanochimie pour les nanomédicaments(3) et les nanoparticules pour transporter des molécules thérapeutiques dans l’organisme (4). Par synthèse et excitation les molécules peuvent bouger et se déformer (5). Les nanoobjets (6) ont maintenant des applications en électronique dans les composites et les téléviseurs (7). Il importe cependant de protéger les opérateurs et le public afin de prendre des précautions pour les manipuler (8). La conquête de l’infiniment petit n’est pas sans danger mais la haute technologie sait les maîtriser.

- Éditorial
mediachimie

L’hydrogène vert au secours des renouvelables

Le problème majeur des énergies issues de l’éolien ou du photovoltaïque est celui de l’intermittence. Quand il n’y a plus de vent ni de soleil, la production d’électricité s’arrête, et quand il y en a trop, on a des
...

Le problème majeur des énergies issues de l’éolien ou du photovoltaïque est celui de l’intermittence. Quand il n’y a plus de vent ni de soleil, la production d’électricité s’arrête, et quand il y en a trop, on a des difficultés à écouler le surplus d’énergie dans le réseau si la demande est faible (1).

Comment stocker l’énergie et la délivrer ensuite suivant la demande ? L’hydrogène vecteur d’énergie est une solution (2). Ce gaz léger (3) a un pouvoir énergétique massique trois fois plus élevé que l’essence, et sa combustion dans un moteur ou une turbine ne génère que de la vapeur d’eau (4). Par ailleurs, la technologie des piles à combustible est devenue robuste et des automobiles ou d’autres moyens de transports disposent maintenant de piles à hydrogène commercialisées (5). Il est alors tentant d’utiliser ce gaz comme élément de stockage pouvant à la demande fournir de l’électricité. Malheureusement, l’hydrogène est fourni majoritairement par un procédé peu coûteux le « steam reforming » à partir du méthane du gaz naturel, procédé qui génère 10 kg de CO2 par kg d’H2 produit ! Le stockage d’un gaz si léger en vue de sa valorisation énergétique n’est pas facile : sous pression à 700 bars, 1 m3 contient 42 kg de H2, alors que sous forme liquide 1 m3 contient 70 kg (sans compter l’énergie dépensée pour le comprimer ou le liquéfier). Depuis 2008 des chercheurs du CNRS de Grenoble et une société française McPhy Energy savent stocker l’hydrogène à l’état solide dans des galettes d’hydrure de magnésium MgH2 (6) telles que 1 m3 d’hydrure de magnésium contiennent 106 kg de H2. L’idée des chercheurs et de cette société maintenant internationale est de développer des installations qui utilisent le surplus d’électricité issue du vent ou du soleil pour produire de l’hydrogène par électrolyse de l’eau (7), le stocker sur MgH2 à 10 bars, le déstocker à 2 bars et l’utiliser ensuite dans une turbine ou une pile à hydrogène pour produire de l’électricité lors des nuits sans vent et sans lune. Astucieux, non ?

Ils ont fait mieux, McPhy associé à deux sociétés américaines IVYS Energy Solutions et PDC Machines ont développé un intégrateur d’équipements d’hydrogène dévoilé en mars au salon BePOSITIVE à Lyon : la station hydrogène SimpleFuel™. Cet équipement intègre la production par électrolyse, le stockage sous hydrure, la compression et la distribution d’hydrogène pour délivrer 5 à 10 kg d’hydrogène à 700 bars par jour pour les flottes d’automobiles ou de chariots élévateurs (8). Cet équipement a reçu un prix de la DOE et l’agrément réglementaire aux États-Unis. MacPhy a également remporté trois contrats dans la province du Hebei en Chine, à Wyhlen en Allemagne avec l’exploitant allemand Energiedienst et en France à Fos-sur-Mer sur le projet Jupiter 1000 de GRTgaz. Il s’agit là de réalisations « power-to-gas » où l’hydrogène vert stocké est renvoyé dans les circuits normaux de distribution de gaz.

En cette période de morosité où l’on parle peu d’industrie et d’innovation il est réconfortant de voir une solution innovante de stockage et de distribution de « l’hydrogène vert » résolvant partiellement le problème de l’intermittence de la production d’énergie, grâce à une entreprise française dont le savoir-faire est reconnu à l’international.

Jean-Claude Bernier
Avril 2017

Quelques ressources pour en savoir plus :
(1) La complexité du réseau et l’électricité verte
(2) L’hydrogène, un vecteur énergétique inépuisable. Le stockage de l’hydrogène
(3) H2 (produit du jour de la SCF)
(4) Et revoilà l’hydrogène
(5) Fonctionnement de la pile à hydrogène
(6) L’hydrogène qui valorise les énergies renouvelables (vidéo, 7:36)
(7) Production d’hydrogène par électrolyse de l’eau sur membrane acide
(8) L’hydrogène bientôt dans vos automobiles