- Éditorial
mediachimie

Oui la chimie avance masquée

Avec la crise sanitaire occasionnée par le Covid-19 et avec le déconfinement qui s’annonce, la France veut devenir auto-suffisante en masques sanitaires, chirurgicaux mais aussi FFP2 et FFP3 (1). Il existe déjà plusieurs
...

Avec la crise sanitaire occasionnée par le Covid-19 et avec le déconfinement qui s’annonce, la France veut devenir auto-suffisante en masques sanitaires, chirurgicaux mais aussi FFP2 et FFP3 (1). Il existe déjà plusieurs producteurs français Kolmi-Hopen, près d’Angers, qui a reçu récemment la visite du président Macron, Paul Boyé Technologies en Haute-Garonne, Valmy dans la Loire, Macopharma à Mouvaux dans le Nord. Depuis le début de la crise et devant la demande en masques, ils ont accéléré leurs productions, ce qui a permis d’arriver progressivement à 10 millions par semaine fin avril, avec pour objectif 20 millions fin mai puis 40 millions en octobre. Devant la demande importante sur ce marché et avec l’appel à manifestation d’intérêt (AMI) par le ministère de l’Économie, de nouveaux acteurs se lancent aussi dans cette fabrication.

Ce sont à nouveau la chimie, et notamment la chimie des matériaux, qui est alors sollicitée. En effet pour que la France soit indépendante elle doit assurer son approvisionnement en matières premières, en particulier celles qui permettent d’obtenir la composition des 3 couches du masque standard SMS (spunbond-meltblown-spunbond) de tissus non tissés. Or il n’existe qu’une seule unité de production de textile non tissé par extrusion-soufflage (meltblown), Fiberweb, une filiale d’une société américaine située dans le Haut-Rhin, qui annonce investir dans une nouvelle ligne pour tripler sa production, mais qui ne couvrira pas sans doute les besoins des producteurs de masque de l’hexagone.

Deux techniques de production des non-tissés (2) sont possibles :

  • l’extrusion-soufflage ou meltblown qui consiste à extruder rapidement un polymère fondu et à le souffler sous forme de fibres, un peu comme on couvre nos greniers de laine de verre en soufflant les fibres pour l’isolation thermique. On utilise des thermoplastiques comme le polypropylène (3) ou le polyester (4).
  • l’electrospinning ou électrofilage qui permet l’obtention de micro et même nanofibres par extrusion fine assistée par électrostatique, également à partir de polymères fondus ou en suspension dans un solvant.

Ces techniques sont matures et connues dans l’ingénierie des polymères, la seconde permet l’élaboration de membranes non tissées (5). La maîtrise de la structure des fibres, le contrôle de l’organisation des nanofibres dans la micro-structuration du matériau et la composition chimique à l’échelle de quelques dizaines de microns permettent aussi les applications pour la santé (6). On peut aussi jouer sur les mélanges de polymères hydrophobes ou hydrophiles ; polypropylène, polyimide, sur les électrostatiques ; polyester, acrylique. Selon les combinaisons et leurs tailles, les microfibres ou nanofibres piègent par liaisons de van der Waals ou par électrostatique les gouttes des aérosols et/ou les bactéries ou les virus (7).

Espérons que de nouveaux candidats plasturgistes se déclarent intéressés par ces nouvelles activités, le ministère de l’Économie est prêt à subventionner à hauteur de 30% les investissements encore faut-il assurer l’émergence d’un marché pérenne.

Jean-Claude Bernier et Catherine Vialle
Mai 2020
 

Illustration : Fibres polymères vues au microscope électronique à balayage (Daltster - travail personnel, CC BY-SA 3.0, Wikimedia)

Pour en savoir plus
(1) Comment fonctionnent les masques de protection respiratoire (sur le site de Pour la Science)
(2) Le textile, un matériau multifonctionnel
(3) Polypropylène (produit du jour de la SCF)
(4) Les chimistes dans l’aventure des nouveaux matériaux
(5) L’intelligence textile (vidéo)
(6) Chimie du et pour le vivant : objectif santé
(7) Electrospinning et nanofabrication pour la santé et l’énergie – ICPEES (CNRS - Université de Strasbourg)

- Question du mois
mediachimie

Quelle dose moyenne de radioactivité reçoit-on en France ?

La radioactivité a été découverte par un français Henri Becquerel en 1896 qui a constaté qu’en enveloppant un minerai d’uranium d’un papier photographique, celui-ci était impressionné en l’absence de toute lumière par un
...

La radioactivité a été découverte par un français Henri Becquerel en 1896 qui a constaté qu’en enveloppant un minerai d’uranium d’un papier photographique, celui-ci était impressionné en l’absence de toute lumière par un rayonnement inconnu qu’il a baptisé radioactivité.

C’est une propriété d’isotopes instables comme l’uranium 238 (238U) ou le thorium 232 (232Th). Marie Curie découvrit plus tard cette même propriété pour le radium (Ra). Les atomes radioactifs comportent dans leur noyau un nombre de nucléons (protons + neutrons) qui rend ce noyau instable. Pour retrouver une configuration stable ils émettent de l’énergie par rayonnement α (noyaux d’hélium, He), β (électrons) ou γ (photons).

La première unité de mesure de la radioactivité fut le becquerel 1 Bq qui correspond à une désintégration par seconde. L’activité d’une source peut s’exprimer en Bq ou en Bq/kg activité massique (1). Notre corps est lui-même radioactif d’environ 120 Bq/kg. Si vous pesez 70 kg, l’activité est d’environ 8 000 Bq due principalement au potassium 40 (40K) et au carbone 14 (14C).

Ce qui est plus important c’est la dose de radioactivité absorbée par une cible, en joules par kilogramme (J/kg). Anciennement appelée rad pour Radiation Absorbed Dose (rad) elle est actuellement, dans le système international (SI) exprimée en gray (Gy) :
1 Gy = 1 J/kg = 100 rad.

Elle trouve son utilité en radioprotection. On définit alors la dose efficace qui est la somme pondérée des doses équivalentes (des rayonnements α, β et γ) absorbées par les organes et tissus humains. Elle est exprimée dans le système international en sievert (Sv) (2) ou son millième, le mSv, unité universellement admise pour la mesure d’exposition à la radioactivité et risques d’apparitions de dégradations de la santé.

Les facteurs de radioactivité

Sur terre nous sommes exposés à plusieurs facteurs. Tout d’abord les rayonnements cosmiques qui nous arrivent du Soleil et de l’espace, le rayonnement tellurique issu des réactions du noyau terrestre et aussi le radon, un gaz lourd radioactif plus ou moins présent dans le sol et le sous-sol, particulièrement dans les régions granitiques. N’oublions pas nos propres activités humaines : si vous passez une radiographie ou un scanner vous êtes exposés aux rayons X (analogues au rayonnement γ), si vous skiez en altitude ou si vous faites des voyages en avion vous serez exposés à plus de rayons cosmiques. Enfin votre propre alimentation vous fait absorber le 40K présent dans les aliments.

Sourcesen mSv par personne et par an
Radon1,4
Examen médical1,6
Rayonnement telleurique0,6
Rayonnement cosmique0,3
Alimentation0,5
Dose moyenne4,4

Le tableau montre les principales sources et les moyennes, Il peut y avoir de fortes variations suivant les régions habitées, l’altitude fréquentée, l’alimentation absorbée et le comportement individuel.

Quelques exemples et de fausses idées

Pour le radon, dans une cave dans le Cantal, en Lozère ou en Bretagne vous pouvez mesurer des valeurs très variables de 0,5 à 3 mSv. Une radiographie des poumons ou de l’abdomen peut donner des valeurs comprises entre 0,5 et 1,2 mSv, un scanner beaucoup plus. Un voyage aller et retour Paris – New-York, 0,06 mSv, un séjour de ski d’une semaine à 2000 m correspond à 0,25 mSv.

La dose admise réglementairement d’exposition annuelle pour la radioactivité artificielle est de 1 mSv. C’est une norme et ne correspond en rien à une limite dangereuse. Celle-ci est de 100 mSv et correspond à la zone rouge pour la protection des travailleurs du nucléaire pour lesquels on fixe une limite de 20 mSv cumulés sur les 12 derniers mois pour qu’il n’y ait aucune répercussion sur leur formule sanguine.

Les mesures de la radioactivité de l’air se sont multipliées depuis les années 2000, elle est de l’ordre de 100 nSv/h (nSv = nanosievert ou 10-6 mSv). Le réseau de l’IRSN (3) donne pour les grandes villes françaises des valeurs comprises entre 112 et 130 nSv/h. Les retombées radioactives des expériences nucléaires en atmosphère qui ont eu cours jusque dans les années 1970 et l’accident de Tchernobyl en 1986 ne contribuent actuellement à la radioactivité des sols que pour 0,05 mSv, en constante diminution. Les anciens postes de télévision à tube cathodique émettaient des rayons X et pouvaient contribuer à 0,02 mSv par an pour le téléspectateur, les écrans plats n’émettent plus.

D’autres exemples : fumer une cigarette représente 7µSv à cause des goudrons. Combien en fumez-vous ? Si vous mangez beaucoup de crustacés et de coquillages vous absorbez l’iode 131 et le polonium 210 présent dans l’eau de mer mais cela se chiffre en nano et microsievert rassurez-vous. Dans tous les cas le citoyen français en moyenne ne reçoit que de 3 à 4 mSv par an, surtout par radioactivité naturelle, soit une exposition 25 fois plus faible que la dose dangereuse.

Jean-Claude Bernier et l'équipe Question du mois

 

(1) À côté du becquerel d’autres unités ont été utilisées. Ainsi le curie (Ci) représentant l’activité d’un gramme de radium, soit 1 Ci = 37 109 Bq.
(2) L’ancienne unité pour la dose équivalente et la dose efficace était le rem, pour « röntgen equivalent man ». 1 Sv = 100 rem
(3) IRSN : Institut de Radioprotection et de Sûreté Nucléaire

- Événements

Actualités COVID-19

Mediachimie.org vous propose de retrouver sur cette page un ensemble de ressources et de liens relatifs au coronavirus SARS-CoV-2 et à la pandémie de COVID-19. Éditoriaux Mediachimie Oui la chimie avance masquée Gel
...

Mediachimie.org vous propose de retrouver sur cette page un ensemble de ressources et de liens relatifs au coronavirus SARS-CoV-2 et à la pandémie de COVID-19.

Éditoriaux Mediachimie

Articles de L'Actualité chimique

Académie des sciences

Autres ressources

  • Tribune du journal Les Echos : Où sont les antiviraux ?
    Dans cet article paru dans "Les Echos" vendredi 27 mars 2020, le professeur Bernard Meunier, membre du Conseil de la fondation de la Maison de la Chimie et ancien président de l'Académie des sciences analyse en tant que spécialiste reconnu internationalement de la biochimie les possibilités de trouver un remède au COVID-19, mais surtout il examine de façon critique la politique de santé et la stratégie de recherche pharmaceutique qui ont négligé le plus souvent les avancées et les potentiels des "petites molécules" chimiques.
    Lire l’article de Bernard Meunier sur le site des Echos   |   Version PDF
  • Lettre d’encouragement et de reconnaissance à la filière « Chimie et Matériaux » pour leur rôle dans la lutte contre la propagation du COVID 19, Bruno Lemaire, Ministre de l’Economie et des Finances de 23 mars 2020
- Événements

À voir et revoir

Découvrez les dernières vidéos de la série Des Idées plein la Tech’ et Petites histoires de la chimie :   Synthèse contre paluChimie de campagneGoethe et la découverte de la caféineÉdouard Grimaux, ca fermente ! À la
...

Découvrez les dernières vidéos de la série Des Idées plein la Tech’ et Petites histoires de la chimie :

 

Synthèse contre palu
Chimie de campagne
Goethe et la découverte de la caféine
Édouard Grimaux, ca fermente !

  • À la suite des travaux de la lauréate du Prix Nobel Youyou Tu, le Laboratoire de Chimie de Coordination (LLC) du CNRS à Toulouse travaille à la synthèse de nouvelles molécules pour soigner le paludisme : Synthèse contre palu
  • Étude des effets des pesticides sur les sols d’une tourbière utilisée pour la culture du maïs : Chimie de campagne
  • Johann Wolfgang von Goethe est connu comme écrivain, mais il était aussi curieux. Il demanda au jeune chimiste Friedlieb Ferdinand Runge pourquoi le café maintenait éveillé. Ce fut le début d’une série de découvertes mobilisant de grands chimistes en Europe, allant de la caféine à des molécules importantes pour la chimie organique et l’industrie des colorants : Goethe et la découverte de la caféine
  • Édouard Grimaux fut chimiste, découvreur d’un sucre synthétique fermentescible. Mais ce chercheur foisonnant et original fut aussi pharmacien, médecin, enseignant, ami de Georges Clemenceau, biographe de Lavoisier et farouche défenseur des Droits de l’Homme, engagé notamment dans la défense du capitaine Dreyfus : Édouard Grimaux, ca fermente !


 




- Événements

Continuité pédagogique

Pour contribuer à la continuité pédagogique en ces temps de confinement, Mediachimie.org vous propose de retrouver un ensemble de ressources dédiées à la chimie, ses innovations et son enseignement. Ces ressources sont
...

Pour contribuer à la continuité pédagogique en ces temps de confinement, Mediachimie.org vous propose de retrouver un ensemble de ressources dédiées à la chimie, ses innovations et son enseignement. Ces ressources sont issues du site Mediachimie mais également de nos partenaires (Nathan, La main à la pâte…).

L’accès à ces ressources est gratuit et permettra aux collégiens, lycéens et étudiants de disposer de différents média (articles, animations et vidéos) conformes aux programmes en vigueur.

Cette page est actualisée régulièrement, n’hésitez pas à la consulter régulièrement et à la partager.

Toute notre équipe vous assure de son soutien.


Mediachimie

Vous trouverez dans l'Espace Enseignants, des documents indexés par thématiques transverses pour les écoles et les collèges et l’enseignement supérieur, et par ligne des programmes actuels pour les lycées. N’hésitez pas également à utiliser les ressources pour le lycée réalisées dans le cadre du partenariat Fondation Maison de la Chimie/Nathan : dossiers pédagogiques et fiches d’orientation.

L’Espace Médiathèque présente les ressources par thèmes transdisciplinaires d’intérêt sociétaux. On y trouve également une partie histoire de la chimie qui propose entre autres des animations vidéos.

L’Espace Métiers aide à répondre à vos questions Quelle orientation ? Quelle formation choisir ? Vers quels métiers ? et détaille plus précisément les parcours types de formations (CAP/BacPro/Bac Techno, Bac+2/3, Bac+5/8) et tous les métiers où une formation en chimie est nécessaire.
Des fiches « Les chimistes dans … » permettent de découvrir que les chimistes interviennent dans de très nombreux secteurs d’activité et ce qu’ils y apportent. 62 fiches métiers accompagnées de nombreuses vidéos décrivent les fonctions que l’on peut exercer dans les différents domaines d’activité des entreprises (recherche, développement, procédés, marketing, vente…). Pour les collégiens un ensemble de fiches métiers leur est dédié. Enfin pour en savoir plus sur les salaires, les bourses d’emploi, la formation par l’apprentissage… vous pouvez consulter la rubrique Des réponses à vos questions.

Nathan, Bordas, Le Robert

Les éditions Bordas, Nathan et Le Robert s’engagent pour assurer la continuité pédagogique auprès des élèves concernés par les mesures de confinement.
Tous les manuels de la 6e à la 3e existants sous forme numérique sont désormais accessibles d’un simple clic sur le site adistance.manuelnumerique.com. L’accès à ces ressources permettra aux collégiens et à leurs familles de disposer d’une consultation d’ouvrages conformes aux programmes en vigueur.

La main à la pâte

Dans le cadre de la continuité pédagogique, notre partenaire, La main à la pâte, propose semaine après semaine des pistes d'activités pour que les professeurs (et éventuellement les parents) puissent faire travailler les élèves sur des thématiques scientifiques.

Retrouvez les différentes pages :

- Éditorial
mediachimie

Géothermie et batteries : quel rapport ?

Parmi les objectifs de la PPE (programmation pluriannuelle de l’énergie) figure l’objectif en 2030 de 30 % de production électrique par les énergies renouvelables (1). Si près de la moitié est déjà fournie par
...

Parmi les objectifs de la PPE (programmation pluriannuelle de l’énergie) figure l’objectif en 2030 de 30 % de production électrique par les énergies renouvelables (1). Si près de la moitié est déjà fournie par l’hydraulique, on se base alors sur le développement de l’éolien et du photovoltaïque (2) qui ne représentent respectivement que 5,2 % et 2 % de la production nationale. Un volet encore modeste est celui de la géothermie qui peut apporter sa contribution non seulement à l’électrique mais aussi aux réseaux de chaleur.

La production d’électricité géothermique (3) est une technologie mature avec de nombreux exemples aux États-Unis avec 19 TWh de production, suivis par les Philippines et l’Indonésie autour de 10 TWh. On sait aussi que l’Islande avec 5 TWh et ses réseaux de chaleur est quasi autonome. La France avec seulement 1,5 TWh, soit moins de 0,3 % de la production, révèle un potentiel croissant.

Le site principal utilisant une nappe d’eau chaude est situé à Bouillante en Guadeloupe qui va porter sa puissance à 25 MW en 2020. Le second site, alsacien, à Soultz-sous-Forêts, utilise une autre méthode de géothermie profonde en récupérant la chaleur des roches granitiques poreuses à 5000 m de profondeur, profitant du gradient thermique exceptionnel du sol près de l’arc de la fosse géologique rhénane. La plateforme expérimentale de Soultz, créée en 1987 par une poignée d’ingénieurs et de chercheurs soutenus par Électricité de Strasbourg (ÉS) et le BRGM, a permis jusqu’en 2007 d’accroître les connaissances sur la fluidité des roches et la récupération de la chaleur (4). Depuis 2008 elle est exploitée industriellement par une société franco-allemande (ÉS et EnBW) et fournit 1,5 MW de puissance. Elle a essaimé à 7 km de là, à Rittershoffen, avec un nouveau forage qui fournit, depuis 2016, 24 MW thermique au circuit de vapeur de l’usine Roquette grâce à un réseau de chaleur de 15 km. Depuis, les projets de forage dans le Bas-Rhin se sont multipliés surtout depuis que les analyses des eaux de forage sur la plateforme de Vendenheim-Reichstett ont montré qu’elles contenaient de 0,15 g à 0,2 g/L de chlorure de lithium. Rappelons que le lithium est actuellement un métal très demandé, dont le prix à la tonne augmente fortement à cause de son utilisation croissante dans les batteries ion–lithium (5). Dans ce cadre un consortium international de recherche EuGeLi (European Geothermal Lithium Brine) s’est formé pour exploiter le procédé propre d’Eramet qui consiste par procédé membranaire à retenir le chlorure puis le transformer en carbonate et à réinjecter les eaux après échange de chaleur et production d’électricité. Les promoteurs du projet veulent implanter un démonstrateur en 2021 et tablent prudemment sur une production annuelle de l’ordre de 1500 tonnes de carbonate de lithium vers 2025.

Restent encore quelques obstacles : les acteurs de la géothermie profonde conditionnent ce développement prometteur à un soutien public pour un complément rémunérateur, situé à 246 € le MWh, voire 200 € si la commercialisation du lithium vient abaisser le prix de revient (6) (notons qu’il y a quelques années le rachat du solaire photovoltaïque était à 600 €/MWh). Il faudra ensuite faire une étude sérieuse du coût de carbonate de lithium au niveau européen sachant cependant qu’une production nationale serait favorable à « l’Airbus européen des batteries ».

Enfin et ce n’est pas le moindre, la mise en place et le fonctionnement de ces forages à proximité du domaine de l’Europole de Strasbourg » a provoqué de micro-secousses sismiques (7) certes inférieures à 2 sur l’échelle de Richter mais qui inquiètent les riverains à tel point que le préfet a demandé un rapport des universitaires et chercheurs du centre de surveillance de l’Institut du globe de Strasbourg.

Souhaitons que ces problèmes économiques et géophysiques ne stoppent pas ces développements que les initiateurs des années 80 que j’ai bien connus n’avaient jamais imaginés même dans leurs rêves.

Jean-Claude Bernier *
Avril 2020

 

* Remerciements à Andrée Harari pour avoir initié cet éditorial.

Pour en savoir plus :
(1) Une électricité 100% renouvelable : rêve ou réalité ?
(2) Stocker l’énergie du Soleil (vidéo)
(3) La géothermie (vidéo)
(4) La maison écologique
(5) Les batteries sodium–ion
(6) Le lithium, nouvel or blanc ?

(7) Gaz de schistes : quels problèmes pour l’environnement et le développement durable ?

 

- Événements

Continuité pédagogique : Nathan, Bordas et Le Robert

Les éditions Bordas, Nathan et Le Robert s’engagent pour assurer la continuité pédagogique auprès des élèves concernés par les mesures de confinement. Tous les manuels de la 6e à la 3e existants sous forme numérique sont
...

Les éditions Bordas, Nathan et Le Robert s’engagent pour assurer la continuité pédagogique auprès des élèves concernés par les mesures de confinement.

Tous les manuels de la 6e à la 3e existants sous forme numérique sont désormais accessibles d’un simple clic sur le site adistance.manuelnumerique.com. L’accès à ces ressources permettra aux collégiens et à leurs familles de disposer d’une consultation d’ouvrages conformes aux programmes en vigueur.

En outre n’hésitez pas à utiliser les ressources (lycée) réalisées dans le cadre du partenariat Fondation Maison de la Chimie/Nathan ainsi que l'ensemble des ressources sur Mediachimie pour accompagner au mieux vos élèves à distance dans le cadre des programmes scolaires de tous niveaux mais également pour l’enrichissement de leurs connaissances.


 

- Événements
mediachimie

Où sont les antiviraux ?

À circonstances exceptionnelles actualité exceptionnelle ! Mediachimie vous propose un article du professeur Bernard Meunier, membre du Conseil de la fondation de la Maison de la Chimie et ancien président de l'Académie
...

À circonstances exceptionnelles actualité exceptionnelle ! Mediachimie vous propose un article du professeur Bernard Meunier, membre du Conseil de la fondation de la Maison de la Chimie et ancien président de l'Académie des sciences.

Lire l’article de Bernard Meunier sur le site des Echos   |   Version PDF

Dans cet article paru dans "Les Echos" ce vendredi 27 mars, il analyse en tant que spécialiste reconnu internationalement de la biochimie les possibilités de trouver un remède au COVID-19, mais surtout il examine de façon critique la politique de santé et la stratégie de recherche pharmaceutique qui ont négligé le plus souvent les avancées et les potentiels des "petites molécules" chimiques.