|
L’insuline et ses modes de production
Rubrique(s) : Zoom sur...

Voilà 100 ans, le 11 janvier 1922, que pour la première fois un enfant de 14 ans en coma diabétique reçut une injection d’un extrait de pancréas (et donc d’insuline) ; il fut sauvé et survécu 13 ans avec des injections régulières d’insuline.
Quel est le rôle de l’insuline ?
L’insuline est une hormone, secrétée par le pancréas, dès que la glycémie (taux de glucose dans le sang) dépasse un seuil. Cette sécrétion favorise un retour de la glycémie à une valeur de base. Son absence ou sa sécrétion insuffisante est responsable des divers types de diabète[…]
|
Colloque Chimie et Notre-Dame
Rubrique(s) : Événements

Le cycle des Colloques “Chimie &…” s'enrichit d'un nouvel opus :
Chimie et Notre-Dame : La science au service d'une résurrection
Mercredi 9 février 2022
Maison de la Chimie, 28 bis rue Saint-Dominique, 75007 Paris
Après l’incendie de Notre-Dame de Paris qui, en 2019, nous a tous bouleversés, le Ministère de la Culture et le CNRS se sont mobilisés au côté de l’Établissement public chargé de la conservation et de la restauration de la cathédrale Notre-Dame de Paris créé par l’État et se sont associés dans le cadre d’un grand chantier scientifique pour mettre les compétences et les connaissances des chercheurs d’une cinquantaine de leurs laboratoires au service de la « résurrection » de l’édifice et de ses œuvres d’art. À cette occasion, ces chercheurs se sont aussi donné pour objectif le renouvellement des connaissances sur l’édifice et son histoire.
La chimie est présente aussi bien sur le chantier de restauration que dans ce programme de recherche et d’innovation qui associe archéologues, historiens de l’art, chimistes, physiciens et informaticiens, aux architectes et compagnons présents sur le site.
La Fondation de la Maison de la Chimie a souhaité faire le point sur ce que les sciences de la chimie ont et pourront apporter dans le programme de restauration de la cathé-drale et plus généralement via des innovations dans le domaine des matériaux du patrimoine. Le responsable et les coordinateurs du programme nous ont fait l’honneur non seulement d’intervenir comme conférenciers, mais aussi de nous aider dans le choix des experts pour réaliser cet ambitieux objectif. Nous les en remercions vivement. La vue de l’incendie de Notre-Dame de Paris et son triste bilan ont profondément touché les citoyen de tous âges dans le monde entier.
Ce colloque, qui vise à apporter des informations précises sur le rôle possible des sciences « chimiques » dans la réparation de ce terrible événement et comment la chimie peut contribuer à lui redonner vie, est ouvert à tous les publics, avec une attention particulière aux jeunes et au monde éducatif. Le niveau des interventions se veut accessible à tous.
Bernard Bigot
Président de la Fondation internationale de la Maison de la Chimie
et Directeur Général de l’Organisation internationale ITER
Aller vers la page : Diffusion en direct
Information :
L’accès au colloque est gratuit mais pour participer, l’inscription est obligatoire et se fait uniquement en ligne.
Nous vous informons que pour entrer dans la Maison de la Chimie, vous devrez être en possession d’un Pass Sanitaire ou d’un justificatif de Test antigénique/PCR de moins de 24 heures.
Par ailleurs, le port du masque sera obligatoire dans toute l’enceinte de la Maison de la Chimie.
Le colloque sera également retransmis en direct tout au long de la journée sur la chaîne YouTube de notre médiathèque mediachimie.org pour permettre la participation du plus grand nombre.
La fenêtre qui donnera accès au streaming ne sera ouverte que le jour du colloque.
SI VOUS SOUHAITEZ SUIVRE LE COLLOQUE A DISTANCE, MERCI DE NE PAS VOUS INSCRIRE.
Le déjeuner, compris dans l’inscription, est gratuit mais sous réserve des places disponibles (même si réservé lors de l’inscription), les scolaires étant prioritaires.
Les enseignants souhaitant venir au colloque accompagnés de leur classe sont priés de bien vouloir contacter le secrétariat des inscriptions : p.bridou-buffet@maisondelachimie.com.
Intervenants :
- Bernard BIGOT, Président de la Fondation internationale de la Maison de la Chimie et Antoine PETIT, Président-Directeur Général du CNRS — Introduction
- Sophie AYRAULT, Directrice de Recherches au CEA, Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Université Paris Saclay — Tracer les plombs de Notre-Dame de Paris par leur signature isotopique et élémentaire.
- Richard BOYER, Directeur Général SOCRA — La restauration des statues en cuivre de la flèche de la cathédrale Notre-Dame de Paris.
- Livio de LUCA - Directeur de l'UMR Modèles et simulations pour l’Architecture et le Patrimoine (MAP), Directeur de recherche au CNRS — Un écosystème numérique pour l’analyse et la mémorisation multidimensionnelle du chantier scientifique Notre-Dame.
- Philippe DILLMANN, Directeur de Recherche - CNRS — Matériaux du patrimoine, compréhension du passé, prévision du futur ; quelques exemples.
- Alexa DUFRAISSE, Chargée de recherche au CNRS, UMR 7209 Archéozologie, archéobotanique : Sociétés, Pratiques et Environnements (ASSPE), CNRS/MNHN, Paris — Mémoire du bois : apport de la chimie à la connaissance de la charpente carbonisée de Notre-Dame de Paris.
- Rémi FROMONT, ACMH - Covalence Architectes et Pascal PRUNET, Architecte en chef des Monuments Historiques — Notre-Dame de Paris, matériaux et construction.
- Général d’armée Jean-Louis GEORGELIN | représentant spécial du Président de la République et président de l’établissement public chargé de la conservation et de la restauration de la cathédrale Notre-Dame de Paris — Le chantier de Notre-Dame de Paris : état et perspectives
- Julien Le BRAS, Président Directeur Général Groupe Le Bras Frère — Charpente de sécurisation des arcs boutants et des voûtes.
- Maxime L’HERITIER, Maître de conférences en histoire médiévale, Université Paris 8, ArScAn CNRS UMR 7041 — L'apport des analyses chimiques à la connaissance des armatures de fer de Notre-Dame de Paris.
- Pascal LIEVAUX - Conservateur général du patrimoine, délégation à l'inspection, à la recherche et à l'innovation, direction générale des Patrimoines et de l'Architecture et Aline MAGNIEN - Conservatrice générale du patrimoine, Directrice du Laboratoire de Recherche des Monuments historiques, Ministère de la Culture et de la Communication — De la chimie des matériaux à l’alchimie des équipes.
- Claudine LOISEL, Ingénieure de recherche, responsable du pôle scientifique Vitrail, Laboratoire de recherche des monuments historiques (LRMH) — La conservation-restauration et la recherche sur les vitraux de la cathédrale Notre-Dame de Paris.
- Witold NOWIK, Chimiste, Ingénieur de recherche, responsable du pôle Peinture murale et polychromie, Laboratoire de Recherche des Monuments Historiques. et Marie PARANT, Restauratrice de peintures murales, indépendante — Conservation-restauration de peintures polluées par dépôt d’aérosols de plomb.
- Véronique VERGES-BELMIN, Géologue, Ingénieure de recherche, responsable du pôle scientifique Pierre, Laboratoire de recherche des monuments historiques (LRMH) — Conservation des maçonneries endommagées par les sels solubles suite à l'incendie de Notre-Dame de Paris en 2019.
Conception graphique : CB Defretin | Images : © Renato SALERI / MAP / Chantier Scientifique Notre-Dame de Paris / Ministère de la culture / CNRS – © Cyril FRESILLON / IRAMAT / NIMBE / ArScAn / CEA / Chantier Scientifique Notre-Dame de Paris / Ministère de la culture / CNRS – © V. ABERGEL/A. GROS/MAP/MIS/Vassar College/A-BIME/Chantier Scientifique Notre-Dame de Paris/Ministère de la culture/CNRS – © V. ABERGEL/L. DE LUCA/MAP/SRA-DRAC/AGP/MIS/Chantier Scientifique Notre-Dame de Paris/Ministère de la culture/CNRS – © Cyril FRESILLON / AASPE / CNRS Photothèque – © Kévin JACQUOT / MAP / Chantier Scientifique Notre-Dame de Paris / Ministère de la culture / CNRS – © V. ABERGEL/L. DE LUCA/MAP/SRA-DRAC/AGP/Vassar College/MIS/Chantier Scientifique Notre-Dame de Paris/Ministère de la culture/CNRS
La chimiothérapie consiste à administrer un principe actif (PA) libre (toxicité souvent élevée) ou à l’incorporer dans des nanoparticules (NP) par encapsulation dite physique (mais la libération du PA est alors souvent trop rapide et incontrôlée). Dans cet article on envisage un couplage entre le PA et un polymère pour constituer un « prodrogue polymère » où le PA rendu inactif par un lien covalent est ensuite libéré de manière douce par hydrolyse enzymatique.
Par exemple on couple une molécule de Gemcitabine (anticancéreux pour le cancer du pancréas en particulier) avec une alcoxyamine (R1 R2N-O-R3) contenant un amorceur radicalaire (groupe nitroxyde, R1 R2N-O▪) qui sert d’amorceur par polymérisation contrôlée sur un monomère vinylique (l’isoprène est choisi car issu de terpènes naturels biocompatibles). Le polymère mono-fonctionnalisé est de masse molaire assez faible (Mn = 5000 g.mol-1) mais la fraction massique en PA est bien plus grande (jusqu’à 30%) que pour les NP classiques où le PA est simplement encapsulé.
Source : L’Actualité chimique n° 447 (janvier 2020) pp. 63-64
Les bandes adhésives ne se résument pas à un simple ruban de film collant d’usage courant et bon marché. L’apparition des systèmes de miniaturisation électronique demande des performances spécifiques. Ainsi selon les applications l’épaisseur du support varie de quelques dizaines de micromètres à quelques mm, la couche d’adhésif dépassent rarement 250 micromètres tandis que le film protecteur a une épaisseur comprise entre 50 et 100 micromètres.
Source : L’Actualité chimique n° 456-457-458 (novembre-décembre-janvier 2021) pp. 211-212
|
Les derniers résultats de la production d’hydrogène «décarboné»
Rubrique(s) : Zoom sur...
L’expression « hydrogène à faible empreinte carbone » est plutôt recommandée par le Journal officiel. L’hydrogène jouera sans doute un rôle important dans la transition énergétique. Il possède en effet l’énergie massique la plus élevée des combustibles (1200 MJ/kg) soit trois fois celle de l’essence ; de plus son utilisation dans les piles à combustible avec l’oxygène ne forme en effet que de l’eau sans aucune émission de produits polluants et fait l’objet de nombreux articles et dossiers dans la presse. Il est aussi à ce jour le meilleur moyen de stocker massivement de l’énergie sur une longue durée ce qui permet de répondre à l’intermittence des énergies solaire et éolienne.
Acccéder au Zoom sur les derniers résultats de la production d’hydrogène « décarboné »
La nature est une source d’inspiration pour la chimie. Elle fournit notamment bon nombre de molécules dans des champs variés en produisant des principes actifs pour la médecine, des colorants, des molécules odorantes, etc. Il « suffit » aux chimistes de les en extraire. Une plus-value de la chimie face à la nature réside souvent dans sa capacité à produire des molécules qui n’existent pas ou d’en produire en quantité supérieure et suffisante : c’est le domaine de la synthèse chimique. Et si on confiait à la nature le soin de produire elle-même ces molécules de synthèse ? Ce sont là des enjeux de la biologie de synthèse, dont les artisans se trouvent être... les levures et les bactéries : « des micro-chimistes » !
Parties des programmes associées :
- Programme de biochimie, biologie et biotechnologies de terminale STL : S1 – Enzymes et voies métaboliques
- Programme de physique-chimie de première STL : Transformation chimique – Cinétique d’une réaction chimique
- Programme d’enseignement de spécialité de physique-chimie de la classe de terminale générale : Constitution et transformations de la matière – 4. Élaborer des stratégies en synthèse organique
|
Pourquoi le champagne, le vin ou du Coca-Cola® peuvent-ils abimer le marbre ?
Rubrique(s) : Question du mois

Les fêtes arrivent et vous allez peut-être nonchalamment poser votre verre de vin, de champagne ou de Coca-Cola® sur le plateau de marbre qui recouvre un ancien meuble chez vos parents ou grands-parents.
Aïe aïe aïe ! Un anneau rugueux et parfois blanchâtre risque d’apparaitre quand vous allez retirer votre verre si quelques gouttes du précieux liquide ont coulé le long du verre jusqu’à son pied. Mais que s’est-il passé ?
Des boissons légèrement acides
Les vins qu’ils soient blancs ou rouges sont légèrement acides. En effet ils contiennent entre autres les acides tartrique, malique, citrique, lactique et succinique. Les trois premiers proviennent du moût et les deux derniers des fermentations. Le pH est la grandeur qui mesure cette acidité (i). En moyenne il vaut environ 3,3 pour un vin blanc, 3,5 pour un rouge, 3,4 pour un rosé et 3,0 pour un champagne. Quant au Coca-Cola® qui contient de l’acide phosphorique, son pH est voisin de 2,5 pour le classique (ii). De même les jus de fruits comme les jus d’orange ou de citron sont acides. Les boissons gazeuses contiennent de plus une forte concentration en dioxyde de carbone CO2.
Et le marbre, de quoi est-il fait ?
Nous parlons ici du vrai marbre. Le calcaire ou carbonate de calcium (CaCO3) est le principal constituant des marbres. S’ils sont colorés, veinés, ou polychromes comme peut être celui du plateau de votre meuble c’est grâce à la présence d’autres éléments chimiques (iii). Selon les carrières d’où provient le marbre ces éléments sont caractéristiques et font sa renommée, comme le marbre blanc veiné de gris de Carrare ou le rose des carrières de Caunes-Minervois que l’on peut admirer au Grand Trianon dans le parc du château de Versailles…
Quelles réactions avec le marbre ? Il faut distinguer les boissons tranquilles des boissons gazeuses.
Pour les vins et jus de fruits non gazeux
Le calcaire est une base et si un acide l’attaque, il se passe une réaction qui s’accompagne d’un dégagement de dioxyde de carbone. Cela dégrade le calcaire en surface. Appelons RCOOH tout acide présent et la réaction s’écrit :
2 RCOOH + CaCO3 → 2 RCOO- + Ca2+ + CO2 (gaz°) + H2O
Quand vous retirez votre verre, un petit rond creux apparait et la surface du marbre y est devenue un peu rugueuse. La dégradation locale est irréversible. Pour redonner un bel aspect il faudrait repolir le marbre.
Pour le champagne et les boissons au cola, c’est plus compliqué !
Ces deux boissons présentent de plus du dioxyde de carbone dissous. Pour le champagne il s’est formé in situ lors de la fermentation alcoolique en milieu clos (iv). Pour le cola il est ajouté sous pression. À la réaction acido-basique précédente se superposent d’une part une attaque par l’acide phosphorique dans le cas du cola et pour les deux une suite de réactions liées à la forte présence de CO2 dissous.
CaCO3 (contenu dans le marbre) + CO2 (dans la boisson) + H2O → 2 HCO3- + Ca2+
Des ions bicarbonate (HCO3-) (v) et des ions calcium (Ca2+) sont dissous dans l’eau de la boisson et présents à la surface du marbre. Si on laisse s’évaporer l’eau il se forme un dépôt complémentaire. Du carbonate de calcium blanc se reforme avec dégagement de CO2 selon :
2 HCO3- + Ca2+ → CaCO3(s) (dépôt à la surface du marbre) + CO2 + H2O
Mais les conditions de cristallisation de ce carbonate ne sont plus les mêmes que celles géologiques qui ont conduit aux cristaux de calcite du marbre. La trace blanche qui apparait est ainsi du calcaire pulvérulent déposé sur le marbre !
C’est pourquoi il est déconseillé de réaliser un plan de travail en vrai marbre dans une cuisine car le risque de déposer un liquide (vinaigre, vin…) ou un aliment acide (citron, agrume…) est très important. Les plans de travail d’aspect pierre et résistants sont plutôt en granit ou en matériaux de synthèse capable de parfaitement imiter le marbre ! Il existe aussi des « plans de travail mélaminés » : sur le support en bois aggloméré on encolle une feuille décorative imitant le marbre blanc veiné ou de carrare et enduite d'une couche de résine mélamine (vi) polymère thermodurcissable très résistant.
Toutefois des plans de travail en marbre pour cuisine ou coin repas existent et sont traités en surface par imprégnation afin de boucher les pores et laisser en surface une couche hydrophobe à base de silicones. Il est nécessaire de les entretenir, les nourrir et les protéger par des produits adaptés (cire translucide…).
Certains lavabos ou vasques de salle de bain sont en vrai marbre. Le risque est plus faible d’y renverser un liquide acide, mais pensez-y !
Françoise Brénon et l’équipe Question du mois
(i) Le pH dans l’eau varie de 0 à 14. Le milieu est neutre quand le pH vaut 7. Il est acide si pH < 7 et basique si pH > 7.
(ii) À combien s'élève le pH du Coca‑Cola et qu'est-ce que cela veut dire? sur le site Coca-Cola Suisse
(iii) Le calcaire y est présent sous forme de cristaux de calcite, CaCO3, pouvant présenter des structures différentes avec des traces d’autres ions minéraux (manganèse Mn, fer Fe, zinc Zn…).
(iv) Ce sont presque 5 litres de CO2 qui sont piégés dans une bouteille standard créant une pression d’environ 5 à 6 bar. Attention donc de ne pas prendre le bouchon dans les yeux quand il saute ! Pour en savoir plus : Pourquoi y-a-t-il des bulles dans mon champagne ?
(v) L’ion HCO3- a pour nom hydrogénocarbonate mais il est plus connu dans le grand public sous le nom de bicarbonate.
(vi) Le monomère mélamine a pour formule C3H6N6
Pour en savoir plus
Carbonate de calcium / calcite/ calcaire, Produit du jour de la SCF
Zoom sur la vinification, Mediachimie.org
Mesurer le pH d’une solution : des acides, du raisin au vin, dossier Nathan Mediachimie, Mediachimie.org
Crédits illlustration : Tache sur marbre. Source : Françoise Brénon
|
Colloque Chimie et agriculture durable - les vidéos sont en ligne !
Rubrique(s) : Événements

Le colloque " Chimie et agriculture durable: un partenariat en constante évolution scientifique " a eu lieu le 10 novembre 2021. Retrouvez dès maintenant les captations vidéos des conférences du colloque sur Youtube/mediachimie ou sur le site de la Fondation de la Maison de la chimie.
|
Que faire des pales d’éoliennes ?
Rubrique(s) : Éditorial

Alors que la stratégie gouvernementale de la transition énergétique se base en partie sur l’énergie éolienne, nombre d’experts pointent la difficulté d’atteindre les objectifs fixés pour 2028. En effet il existe en France en 2021 8000 éoliennes sur 1400 parcs, qui ont fourni 8% de la production électrique en 2020 pour une puissance installée de 18 GW (1). Les objectifs de la feuille de route sont d’arriver à 34 GW pour l’éolien terrestre soit donc de doubler le nombre d’éoliennes, et de 5 GW pour l’offshore. Les puissances individuelles de chaque éolienne sont passées en plus de 20 ans de 1,5 MW à 5 MW voire 7 MW pour l’éolien en mer. Comme la puissance est proportionnelle à la surface du cercle décrit par les pales, celles-ci sont passées de 20 m à près de 160 m de longueur grâce au progrès de la chimie des matériaux composites (2).
Une note du ministère de la Transition écologique rappelle que pour atteindre les objectifs il sera nécessaire de s’assurer de la rentabilité des installations, de leur maintenance, de leur intégration paysagiste et enfin de leur recyclage. Au moment où de plus en plus de Français s’inquiètent ou s’opposent à de nouveaux champs terrestres d’éoliennes et les pêcheurs aux implantations en mer, il importe de se pencher sur le démontage et recyclage des installations (3).
La durée de vie d’une éolienne est de 20 à 30 ans et c’est depuis les années 80 à 90 que l’implantation des parcs s’est faite en Europe. Après plus de 20 ans de bons et loyaux services les machines peuvent être démantelées ou remplacées par d’autres plus modernes. On estime en France à 1500 le nombre d’installations à démonter d’ici 2025 et la PPE (Programmation Pluriannuelle de l’Énergie) précise que le recyclage des principaux composants sera obligatoire dès 2023. En fait près de 75 à 80% de la masse de l’installation peut être recyclée, le béton du socle et l’acier des mâts, la cellule et même le cuivre et les terres rares du rotor sont valorisables. Sur le site lui-même, les excavations des fondations, la remise en état du terrain sont prévues dans la convention privée.
Mais que faire des pales ?
Les premières générations d’éoliennes arrivent en fin de vie et le président de WindEurope estime que d’ici 2023 14000 pales d’éoliennes seront mises hors service et leur recyclage devient une priorité absolue. Ce n’est pas facile car elles sont constituées de matériaux composites comportant des fibres de verre ou plus récemment de fibres de carbone assemblées avec des résines époxy ou de polyester (4). Et jusqu’à présent notamment aux États-Unis elles terminent en enfouissement.
Plusieurs voies sont explorées :
Mécaniques, pour les pales renforcées en fibres de verre
- le broyage : la pale est découpée en morceau puis dans un broyeur à couteau transformée en poudre ou granulés et brulés en cimenterie par exemple ou enfouis.
- les fibres de verre courtes peuvent être utilisées comme renfort dans le béton dans le mobilier urbain ou enrobés routiers. Mais une fois séparées les fibres perdent une partie de leurs propriétés mécaniques.
Chimiques, pour les pales renforcées en fibres de carbone
La fibre de carbone (5) change les données économiques, car bien que de plus en plus utilisée elle reste cependant coûteuse et sa récupération même complexe a un coût élevé. Cela justifie une opération de recyclage. On peut alors trouver plusieurs procédés :
- la solvolyse à haute pression et à 200°-300°c par l’eau supercritique (6), celle-ci devient un solvant qui dissous les composés organiques comme les résines thermodurcissables des pales et permet de séparer les fibres de carbone de la matrice qui peuvent être récupérées.
- la pyrolyse entre 400° et 700°C en milieu semi confiné on « distille » la résine en oléfines, huiles et goudrons et on récupère la fibre de carbone qui n’a pas été oxydée.
- l’écoconception par l’utilisation d’une résine thermoplastique de type polyacrylate comme Elium℗ d’Arkema (7). Lors de la fabrication de la pale la résine liquide est déposée dans le moule sur les tissus et fibres de carbone, on y ajoute le catalyseur de polymérisation qui se fait à température ambiante et en quelques dizaines de minutes. L’avantage est d’utiliser les mêmes outils de conception que pour le thermodurcissable mais sans dépense d’énergie et la réparabilité à froid en cas de dommage est assurée. En fin de vie deux solutions : un procédé de broyage et d’ajouts aux granulés de polymères compatibles comme le PMMA ou l’ABS mené par la plateforme Canoe et l’ICMCB conduit à des nouveaux objets composites ; seconde solution, par chauffage des fragments du composite broyé, on peut aussi dépolymériser le thermoplastique et récupérer le monomère séparé des fibres, des colles et peintures (8).
Si d’ici 2030 on estime à plus de 35000 tonnes de pales issues du démantèlement en Europe et en France à un flux de 1500 t en 2029 nous avons en innovation chimique du pain sur la planche ! D’autant qu’il n’y a pas encore de vraies filières d’économie circulaire (9) pour les matériaux composites non seulement pour les pales d’éoliennes mais aussi pour l’industrie nautique - les coques de bateaux -, aérienne - les corps des avions - et automobile où ils envahissent le marché.
Jean-Claude Bernier
Novembre 2021
Pour en savoir plus
(1) Les énergies renouvelables (vidéo du CEA série « Les Incollables »)
(2) Les chimistes dans l’aventure des nouveaux matériaux (série Les chimistes dans…, mediachimie.org)
(3) Vitesse de déploiement et acceptabilité des nouvelles technologies dans le domaine des énergies, Grégory De Temmerman, Colloque Chimie et énergies nouvelles (février 2021)
(4) Matériaux composites à matrice polymères, d'après la conférence de Patrice Hamelin, La chimie et l’habitat, EDP Sciences (2011)
(5) Les matériaux dans le sport (r)évolutionnaires ! Patrice Bray, Odile Garreau et Jean-Claude Bernier (série Chimie et … en fiches, Médiachimie.org), d’après l’article de Y. Rémond et J.-F . Caron, in La chimie et le sport, EDP Sciences (2011)
(6) Les fluides supercritiques à votre service, S. Sarrade et K. Benaissi, L'Actualité Chimique n°371-372 (2013) p. 72
(7) Les matériaux de la transition énergétique : les attentes et les défis, J.-P. Moulin, Colloque Chimie et énergies nouvelles (février 2021)
(8) Le prix Pierre Potier des lycéens 2020 (Vidéo YouTube)
(9) Les chimistes dans l’économie circulaire (série Les chimistes dans…, mediachimie.org)
Crédits : image d'illustration, licence CC0, PxHere
En tout lieu, nous sommes habitués à stocker et à retrouver en un clic nos données, vidéos, photos, livres, sur n'importe lequel de nos terminaux informatiques, téléphone, ordinateur. Ce service ne demande aucune compréhension des mécanismes sous-jacents, que ce soit le fonctionnement d'un terminal informatique, d'un centre de données, d'un système de télécommmunication. Or l'impact environnemental du stockage et archivage de nos données numériques, déjà problématique, deviendra insupportable d'ici 2040. Notre propos ici concernera des pistes pour réduire drastiquement cet impact environnemental.