- Éditorial
mediachimie

L’hydrogène au secours de l’économie européenne ?

Le 23 juillet 2020, la Commission européenne a présenté à Bruxelles les plans pour le système énergétique de l’avenir et pour l’hydrogène propre. Ces plans doivent ouvrir la voie à un secteur de l’énergie plus efficace et
...

Le 23 juillet 2020, la Commission européenne a présenté à Bruxelles les plans pour le système énergétique de l’avenir et pour l’hydrogène propre. Ces plans doivent ouvrir la voie à un secteur de l’énergie plus efficace et plus interconnecté. Les stratégies prévoient un nouveau programme d’investissements dans les énergies propres dans le cadre du plan de relance, pour stimuler la reprise économique suite à la crise du coronavirus. Parmi ces programmes s’inscrit « la stratégie de l’Union européenne pour l’hydrogène » et dans la foulée se crée « l’alliance européenne pour un hydrogène propre » avec les industriels du secteur, la société civile, les ministères nationaux et la Banque européenne d’investissement.

À cet effet et concrètement, la feuille de route de la transition est la suivante :

Emboitant le pas à la marche politique triomphale vers le verdissement de ce gaz léger cher aux chimistes, l’Allemagne a annoncée fin juin vouloir devenir le numéro 1 du secteur avec 9 milliards € d’investissement suivi par la France qui en ce début septembre annonce y consacrer 2 milliards € dans le plan de relance.

L’hydrogène serait-il devenu comme le protoxyde d’azote un gaz hypnotique pour nos politiques ? Nos lecteurs de mediachimie.org connaissent bien l’hydrogène comme vecteur énergétique et ses applications.

C’est un gaz industriel important, 75 millions de tonnes sont fournis annuellement à l’industrie pour la désulfuration en pétrochimie (2), la synthèse de l’ammoniac et des engrais azotés (3), mais aussi pour l’alimentaire, l’électronique, la métallurgie sans oublier le spatial. En France la production est de 1 million de tonnes et à 96% cet hydrogène vient du vaporeformage (4) qui correspond à la réaction suivante 2 H2O + CH4 = CO2 + 4 H2 . Une réaction similaire est possible avec les hydrocarbures, et la production d’une tonne d’hydrogène s’accompagne donc de 6 à 10 tonnes de gaz carbonique d’où le nom d’ « d’hydrogène gris », dont le prix de revient est de l’ordre de 1 € /kg.

Actuellement, pour moins de 4%, l’hydrogène est produit par l’électrolyse de l’eau. Le procédé le plus mature est l’électrolyse alcaline avec une solution de potasse comme électrolyte. Les procédés modernes utilisent des électrodes bipolaires et travaillent sous une pression de 30 bars pour un rendement électrochimique supérieur à 70%. À l’anode on dégage de l’oxygène

2 OH- → ½ O2 + H2O + 2e-

et à la cathode se dégage l’hydrogène

2 H2O + 2e- → H2 + 2 OH-

Une autre méthode est l’échange sur membrane polymère avec catalyseur platine dite PEM pratiquement l’inverse de la pile à hydrogène, qui a un bon rendement mais moins mature du point de vue industriel.

Cet hydrogène issu de l’eau revient de 3 à 6 €/kg en fonction du coût de l’électricité. Si celle-ci est produite par procédé renouvelable, éolien, photovoltaïque ou l’hydraulique alors il est dit «  hydrogène vert ». On comprend bien que la politique de décarbonisation de l’énergie (5) conduit à condamner le vapo reformage et à fixer comme objectif la croissance des couples électricité renouvelable-électrolyseur.

Voyons si la stratégie européenne est compatible avec les contraintes électrochimiques, thermodynamiques et économiques.

De nombreux industriels maitrisent assez bien l’électrolyse. Plusieurs français dont McPhy commercialisent des installations de plusieurs MW. L’exemple d’Apex Energy ,qui dispose d’électrolyseur des 2 MW, produit environ 1000 m3/h soit environ 700 t /an. Si elle fonctionne avec une énergie renouvelable dont le taux de charge est au mieux de 25% on peut compter par MW de 100 à 120 t/an. Une installation de 1 GW produira alors 120.000 tonnes et les 6 GW prévus en Europe en 2024, 720.000 tonnes soit 7% de la consommation européenne de 10 millions de tonnes.

À quel prix ?

Une très belle étude de l’APHYPAC * donne pour 2020 un coût de l’ordre de 1000 € à 800 € /kW pour un électrolyseur couplé à un réseau d’électricité renouvelable soit donc 1 milliard € à 800 millions € par GW. On comprend alors le prix du ticket d’entrée pour cette transition.

Sur quelle surface ?

Avec les derniers progrès des électrodes bipolaires et la pressurisation pour l’électrolyseur on compte 45 m2 d’emprise au sol /MW soit donc 4,5 hectares pour 1 GW, auquel il faudrait ajouter l’emprise au sol du champ d’éoliennes ou de panneaux photovoltaïques, soit 200 éoliennes de 5 MW sur 100 hectares ou 1 GW de photovoltaïque sur 2000 hectares, à moins de produire en off-shore. On voit que les contraintes financières et physiques à l’échéance 2050 ou même 2030 ne sont pas aussi simples que l’on pense.

Alors, pourquoi cet emballement politique, financier et médiatique ?

C’est que les promesses de l’industrie de l’hydrogène sont importantes. Passons sur l’opportunité de l’hydrogène décarboné pour l’industrie chimique et métallurgique si son prix arrive à concurrencer celui du vaporéformage.

Le secteur du transport est lui bien concerné par un carburant non polluant ne laissant comme gaz d’échappement que de l’eau et de l’azote grâce à la pile à hydrogène (6) (7) fournissant l’électricité aux moteurs. Grâce à des champions européens Alstom, Air liquide et Linde les trains Coradia iLint (8) roulent déjà en Allemagne et vont bientôt remplacer nos vieux TER régionaux. Le secteur des poids lourds qui peuvent eux aussi supporter le poids du « pack » de la pile à hydrogène est en attente. L’exemple de la jeune société américaine Nikola Corporation spécialiste des camions à hydrogène valorisée à 30 milliards de dollars à son entrée en bourse est tout simplement fou. Pour l’automobile des particuliers, la bataille sera rude entre le véhicule électrique et celui à hydrogène (9). Le poids et le prix du « pack » et du réservoir composite tenant à la pression de 700 bars représentent près de 50% du prix de l’automobile (32.000 € sur 70.000 €). Le prix à la pompe du kg d’hydrogène, le manque de station haute pression, le mauvais rendement thermodynamique, handicapent pour l’instant son développement.

En sachant qu’un électrolyseur de nouvelle génération fournit environ 1 Nm3 d’hydrogène par 3,5 kWh, et si on suppose que l’hydrogène vert est issu d’une source électrique ne dégageant pas de CO2 alors l’électricité nucléaire à 4 centimes du kWh mettra le kg d’hydrogène à 1,30 € concurrent de l’hydrogène gris. Serait-ce l’hydrogène « vert clair » ?


* Production d’hydrogène par électrolyse de l’eau (fiche 3.2.1)-Association française pour l’hydrogène et les piles à combustible

Septembre 2020
Jean-Claude Bernier

Pour en savoir plus
(1) Qu’est-ce que l’hydrogène vert ? (Question du mois)
(2) Comment assainir l’atmosphère des villes ? L’hydrotraitement (Fiche Réaction en un clin d’oeil)
(3) Comment fabriquer des engrais avec de l’air ? La synthèse de l’ammoniac (Fiche Réaction en un clin d’oeil)
(4) Et revoilà l’hydrogène
(5)L’hydrogène, une source d’énergie pour le futur
(6) H2O ou comment la synthèse de l’eau conduit à la pile à hydrogène ? (Fiche Réaction en un clin d’oeil)
(7) Hydrogène, la roue libre (vidéo)
(8) Vive le Coradia iLint
(9) De nouveaux véhicules automobiles pas très verts !
 

- Éditorial
mediachimie

Des métaux qui guérissent ?

On sait que pour être en bonne santé, les oligoéléments jouent un rôle majeur dans notre organisme ce sont des composés du zinc, du fer, du manganèse, du magnésium… En revanche on connait moins les vertus antibactériennes
...

On sait que pour être en bonne santé, les oligoéléments jouent un rôle majeur dans notre organisme ce sont des composés du zinc, du fer, du manganèse, du magnésium… En revanche on connait moins les vertus antibactériennes (antivirales ?) des métaux purs. En cette période de pandémie de la covid-19, il n’est pas étonnant qu’un renouveau des recherches sur des applications sanitaires se manifeste et notamment sur l’or, l’argent et le cuivre dans l’ordre décroissant des prix !

L’or (1) par sa couleur jaune a des reflets complexes dus au plasma de surface fluctuant qu’engendrent ses électrons de valence faiblement liés. Les plasmons de surface font actuellement l’objet d’études en particulier pour les nanoparticules (2) sans cependant que ces propriétés de surface fassent l’objet d’applications autres qu’en catalyse. L‘or métal est toutefois utilisé en chrysothérapie et en homéopathie.

L’argent est un métal qui a des propriétés germicide et bactéricide. Dans l’Antiquité (3) on se servait de plaques d’argent pour purifier l’eau. Couverts et plats revêtus d’argent eurent une réelle utilité tant qu’on ne pouvait pas disposer d’eau potable. De là vient l’usage d’offrir en cadeau de baptême aux enfants une timbale en argent. Cette propriété est maintenant redécouverte et utilisée avec les nanoparticules d’argent issues de solutions colloïdales (4). Elles sont utilisées comme germicides dans les textiles sportifs et pour les chaussettes afin d’éliminer les odeurs de transpiration. Dans les dispositifs médicaux, bandages et pansements, ce sont leurs propriétés bactéricides qui sont recherchées, de même dans les emballages alimentaires et les revêtements de parois de réfrigérateur. Avec la pandémie, des tissus imprégnés de particules d’argent et résistant plus de 20 fois au lavage ont été utilisés pour la fabrication de masques de protection.

Le cuivre (5). Parmi les nombreuses études sur le coronavirus, celles des universités de Californie (Los Angeles et Princeton) publiées dans le New England Journal of Medicine ont montré que le coronavirus SARS-CoV-2 (6) peut subsister entre 2 et 3 jours sur du plastique ou de l’acier inoxydable mais disparaît en moins de quatre heures sur le cuivre. Ces observations rejoignent les travaux du professeur Bill Keevil de l’université de Southampton qui depuis plusieurs années étudie la diminution drastique de colonies bactériennes sur le cuivre : Legionella, Escherichia coli par exemple, sont éliminées en quelques heures sur les surfaces, voire quelques minutes sur une poignée de porte en cuivre. Il semblerait d’après l’auteur que les ions Cu(I) et Cu(II) pénètrent dans la cellule des bactéries, y empêchent le transfert d’oxygène et cassent son ADN. Les vertus sanitaires du cuivre sont bien reconnues, ne serait-ce que par l’utilisation massive du cuivre dans nos habitations pour les canalisations et la distribution de l’eau sanitaire. En cette période, les fabricants innovent : une société américaine a sorti un masque en tissu imprégné de cuivre CuTEC antibactérien et le teste contre la Covid-19, une société chilienne a multiplié sa production par 25 en trois semaines avec un masque réutilisable contenant de fins fils de cuivre incrustés dans le tissu. Le Chili, qui est le premier producteur mondial de cuivre, espère profiter de ce marché nouveau. Dans les hôpitaux de ce pays le cuivre est largement utilisé pour les plans de travail, les ustensiles médicaux, les poignées de portes… Un industriel français Lebronze alloys (alloys signifiant alliages en anglais) précise ainsi que ses poignées de portes et ses mains courantes en alliage de cuivre sont aussi une barrière à l’infection, notamment dans les EHPAD.

La lutte contre la pandémie (7) est ainsi devenue métallurgique et variée, des autocollants en cuivre des universitaires américains aux masques à nanoparticules de cuivre (moins chers que l’argent) au Chili jusqu’aux équipements d’hôpitaux. On est loin des bassines en cuivre pour les confitures (8) qui nous paraissent d’un autre temps... Le temps d’avant ?

Jean-Claude Bernier et Catherine Vialle
Juin 2020

Pour en savoir plus
(1) L’or, élément chimique ou magique ?
(2) Nanomatériaux et nanotechnologie : quel nanomonde pour le futur ?
(3) Les métaux au fil de l’histoire (dossier pédagogique) (1266)
(4) Caractérisation des nanoparticules inorganiques dans les produits du quotidien : les méthodes d’analyse et les applications (2548)
(5) Comparaison de quelques alliages de cuivre et de zinc (956)
(6) Le coronavirus, un défi pour la chimie du vivant (2919)
(7) Covid-19 : la chimie médicinale à l’assaut des mécanismes de propagation virale (3032)
(8) Peut-on faire de bonnes confitures sans bassine en cuivre ? (1261)
 

Illustration : casque de cavalerie de Nimègue, masque de fer gainé de bronze et d'argent, seconde moitié du premier siècle, Museum het Valkhof, Nimègue (Pays-Bas)
Following Hadrian/ Flickr - Licence CC by-nc-sa 2.0

- Éditorial
mediachimie

Pollution à Paris : une expérience grandeur nature

On a lu et entendu des arguments contradictoires sur l’influence du confinement imposé après le 15 mars sur la pollution à Paris. Une polémique avec sans doute quelques intentions électorales opposait les partisans d’une
...

On a lu et entendu des arguments contradictoires sur l’influence du confinement imposé après le 15 mars sur la pollution à Paris. Une polémique avec sans doute quelques intentions électorales opposait les partisans d’une réduction drastique de la circulation automobile aux automobilistes convaincus que la pollution n’était pas seulement imputable à leurs engins. La réduction de la circulation automobile de plus de 80% en mars et avril était bien sûr une façon de vérifier les deux options et dire si la pollution à Paris avait vraiment diminué.

Notons en passant que le discours dominant repris par tous les media véhicule souvent des approximations. Il ne faut que se pencher sur les résultats d’un sondage Ipsos de 2018, qui posait la question : la pollution dans vos villes augmente-t-elle ou diminue-t-elle ? Les réponses étaient : elle augmente beaucoup pour 63%, un peu pour 25%, elle ne diminuait que pour 1% des sondés. En réalité depuis 20 ans grâce au sans plomb, à la désulfuration des carburants, aux pots catalytiques et au AdBlue, la chimie et les progrès en catalyse (1) ont réussi à faire diminuer nettement l’émission des polluants : -87% pour le CO, -80% pour C6H6, -44% pour NOx, -70% pour les particules fines, -80% pour SO2, et -100% pour le plomb (*).

Il était donc très intéressant de se faire une opinion basée sur des chiffres de mesures officielles d’Airparif et non sur des impressions vagues ou tendancieuses (2).

En effet l’île-de-France est particulièrement bien fournie en capteurs spécialisés par polluant et dispersés de façon très intelligente pour gommer tous aléas climatiques ou accidentels. C’est près de 110 stations qui traquent et mesurent SO2, CO, O3, NOx, PM2,5, PM10 24 heures par jour et 365 jours par an (3).

Airparif donne chaque jour l’indice Atmo et l’indice européen Citeair noté de 0 à 100 et il a été possible de consulter les graphiques mensuels (0 à 50 vert, 50 à 70 orange, plus de 70 rouge).

Pour février 2020 les indices sont tous verts avec une moyenne de 30 sauf 2 jours orange à 50. Jusqu’au 15 mars on est aussi dans une moyenne de 30 après le 15 apparaissent 6 jours consécutifs orange avec des indices supérieurs à 50-60 puis deux jours, le 27 orange et le 28 rouge avec un indice à 80. Pour le mois d’avril : 7 jours orange au-dessus de 50 jusqu’au 21 avril, ce qui est assez comparable à avril 2019 avec 14 jours orange au-dessus de 50.

On aurait vite fait pour certains de dire que les moyennes des indices de pollution pendant le confinement sont plus élevées qu’en période normale alors que le trafic automobile a diminué de plus de 80% et l’activité économique de plus de 30% et donc que la pollution a été plus importante durant le confinement à Paris. En réalité les choses sont bien plus complexes. Pour les 6 polluants mesurés l’indice Citeair est « l’indice du pire », il ne fait pas une moyenne pondérée des sous-indices. Si par exemple pour SO2, NOx, O3, PM10 les mesures donnent respectivement 50, 30, 70, 40 l’indice Citeair prendra le plus élevé (70) sans tenir compte des autres même s’il y a amélioration pour l’un.

On peut alors faire des moyennes en teneur réelles à partir des chiffres Airparif. De février jusqu’au 15 mars et du 16 mars au 20 avril sur le tableau suivant (**) :

 stationssans confinementavec confinementdifférence
trafic 831483%
PM102317,624,4+39%
PM 2,5137,914,7+87%
NOx405736-37%
O32256,667,5+19%
CO50,1240,006-71%
SO260,660,58-12%

 

On peut alors voir que la baisse de la circulation a fait nettement baisser la teneur en oxydes d’azote mais pas dans les mêmes proportions que la baisse de la circulation (40% comparée à 80%), ainsi que la teneur en oxyde de carbone et oxyde de soufre (4). On pourrait aussi y ajouter que les émissions de CO2 ont aussi baissées. Par contre, et c’est un peu paradoxal, on constate une augmentation des particules fines dont on sait qu’elles sont encore plus nocives que les oxydes d’azote ainsi que la teneur en ozone qui tendrait à dire que la qualité de l’air s’est détériorée au cours du confinement.

Plusieurs explications sont proposées par les spécialistes. Tout d’abord les particules notamment les PM2,5 les plus petites peuvent provenir de l’agriculture avec une saison printanière marquée en Île- de-France et aussi du chauffage au bois lors des soirées plus fraiches (5). Pour l’ozone on sait que les réactions entre les oxydes d’azote et les composés organiques volatils conduisent à sa production, on peut soupçonner les émissions volatiles des arbres et parcs reverdis et non taillés durant la période, plus importantes qu’en hiver (6).

La conclusion est que si le confinement et la baisse drastique de la circulation automobile a montré une diminution des oxydes d’azote et de carbone, elle n’a pas mis en évidence une remontée spectaculaire de la qualité de l’air dans Paris. D’autres sources de pollutions, le chauffage au fuel ou au bois, les vents apportant les poussières et aérosols de l’agriculture y contribuent. C’est donc, malgré les contraintes sanitaires de la distanciation, les recours aux transports en commun et pour les plus riches au véhicule électrique qui devraient être encouragés, en sachant cependant que cela ne résoudra pas l’équation complexe de la pollution des grandes villes.

Jean-Claude Bernier
Mai 2020

(*) Ch Gerondeau, L’air est pur à Paris… mais personne ne le sait ! (éd. L’artilleur, 2018)
(**) Rémi Prud’homme, Confinement : moins de voitures, plus de pollution

Pour en savoir plus
(1) Un exemple de matériau spécifique : pots catalytiques et dépollution automobile
(2) Démocratiser l’information environnementale pour mieux respirer en ville
(3) Les défis de la santé et du bien-être en ville : pollution atmosphérique, nuisance thermique, odeurs
(4) Comment assainir l’atmosphère des villes ? L’hydrotraitement
(5) Ah, un bon feu de bois dans la cheminée !
(6) Chimie atmosphérique et climat

Illustration : Avenue de la Grande Armée, Paris 26 mars 2020, Eric Salard/FlickR, Licence CC BY-SA 2.0

- Éditorial
mediachimie

Oui la chimie avance masquée

Avec la crise sanitaire occasionnée par le Covid-19 et avec le déconfinement qui s’annonce, la France veut devenir auto-suffisante en masques sanitaires, chirurgicaux mais aussi FFP2 et FFP3 (1). Il existe déjà plusieurs
...

Avec la crise sanitaire occasionnée par le Covid-19 et avec le déconfinement qui s’annonce, la France veut devenir auto-suffisante en masques sanitaires, chirurgicaux mais aussi FFP2 et FFP3 (1). Il existe déjà plusieurs producteurs français Kolmi-Hopen, près d’Angers, qui a reçu récemment la visite du président Macron, Paul Boyé Technologies en Haute-Garonne, Valmy dans la Loire, Macopharma à Mouvaux dans le Nord. Depuis le début de la crise et devant la demande en masques, ils ont accéléré leurs productions, ce qui a permis d’arriver progressivement à 10 millions par semaine fin avril, avec pour objectif 20 millions fin mai puis 40 millions en octobre. Devant la demande importante sur ce marché et avec l’appel à manifestation d’intérêt (AMI) par le ministère de l’Économie, de nouveaux acteurs se lancent aussi dans cette fabrication.

Ce sont à nouveau la chimie, et notamment la chimie des matériaux, qui est alors sollicitée. En effet pour que la France soit indépendante elle doit assurer son approvisionnement en matières premières, en particulier celles qui permettent d’obtenir la composition des 3 couches du masque standard SMS (spunbond-meltblown-spunbond) de tissus non tissés. Or il n’existe qu’une seule unité de production de textile non tissé par extrusion-soufflage (meltblown), Fiberweb, une filiale d’une société américaine située dans le Haut-Rhin, qui annonce investir dans une nouvelle ligne pour tripler sa production, mais qui ne couvrira pas sans doute les besoins des producteurs de masque de l’hexagone.

Deux techniques de production des non-tissés (2) sont possibles :

  • l’extrusion-soufflage ou meltblown qui consiste à extruder rapidement un polymère fondu et à le souffler sous forme de fibres, un peu comme on couvre nos greniers de laine de verre en soufflant les fibres pour l’isolation thermique. On utilise des thermoplastiques comme le polypropylène (3) ou le polyester (4).
  • l’electrospinning ou électrofilage qui permet l’obtention de micro et même nanofibres par extrusion fine assistée par électrostatique, également à partir de polymères fondus ou en suspension dans un solvant.

Ces techniques sont matures et connues dans l’ingénierie des polymères, la seconde permet l’élaboration de membranes non tissées (5). La maîtrise de la structure des fibres, le contrôle de l’organisation des nanofibres dans la micro-structuration du matériau et la composition chimique à l’échelle de quelques dizaines de microns permettent aussi les applications pour la santé (6). On peut aussi jouer sur les mélanges de polymères hydrophobes ou hydrophiles ; polypropylène, polyimide, sur les électrostatiques ; polyester, acrylique. Selon les combinaisons et leurs tailles, les microfibres ou nanofibres piègent par liaisons de van der Waals ou par électrostatique les gouttes des aérosols et/ou les bactéries ou les virus (7).

Espérons que de nouveaux candidats plasturgistes se déclarent intéressés par ces nouvelles activités, le ministère de l’Économie est prêt à subventionner à hauteur de 30% les investissements encore faut-il assurer l’émergence d’un marché pérenne.

Jean-Claude Bernier et Catherine Vialle
Mai 2020
 

Illustration : Fibres polymères vues au microscope électronique à balayage (Daltster - travail personnel, CC BY-SA 3.0, Wikimedia)

Pour en savoir plus
(1) Comment fonctionnent les masques de protection respiratoire (sur le site de Pour la Science)
(2) Le textile, un matériau multifonctionnel
(3) Polypropylène (produit du jour de la SCF)
(4) Les chimistes dans l’aventure des nouveaux matériaux
(5) L’intelligence textile (vidéo)
(6) Chimie du et pour le vivant : objectif santé
(7) Electrospinning et nanofabrication pour la santé et l’énergie – ICPEES (CNRS - Université de Strasbourg)

- Éditorial
mediachimie

Géothermie et batteries : quel rapport ?

Parmi les objectifs de la PPE (programmation pluriannuelle de l’énergie) figure l’objectif en 2030 de 30 % de production électrique par les énergies renouvelables (1). Si près de la moitié est déjà fournie par
...

Parmi les objectifs de la PPE (programmation pluriannuelle de l’énergie) figure l’objectif en 2030 de 30 % de production électrique par les énergies renouvelables (1). Si près de la moitié est déjà fournie par l’hydraulique, on se base alors sur le développement de l’éolien et du photovoltaïque (2) qui ne représentent respectivement que 5,2 % et 2 % de la production nationale. Un volet encore modeste est celui de la géothermie qui peut apporter sa contribution non seulement à l’électrique mais aussi aux réseaux de chaleur.

La production d’électricité géothermique (3) est une technologie mature avec de nombreux exemples aux États-Unis avec 19 TWh de production, suivis par les Philippines et l’Indonésie autour de 10 TWh. On sait aussi que l’Islande avec 5 TWh et ses réseaux de chaleur est quasi autonome. La France avec seulement 1,5 TWh, soit moins de 0,3 % de la production, révèle un potentiel croissant.

Le site principal utilisant une nappe d’eau chaude est situé à Bouillante en Guadeloupe qui va porter sa puissance à 25 MW en 2020. Le second site, alsacien, à Soultz-sous-Forêts, utilise une autre méthode de géothermie profonde en récupérant la chaleur des roches granitiques poreuses à 5000 m de profondeur, profitant du gradient thermique exceptionnel du sol près de l’arc de la fosse géologique rhénane. La plateforme expérimentale de Soultz, créée en 1987 par une poignée d’ingénieurs et de chercheurs soutenus par Électricité de Strasbourg (ÉS) et le BRGM, a permis jusqu’en 2007 d’accroître les connaissances sur la fluidité des roches et la récupération de la chaleur (4). Depuis 2008 elle est exploitée industriellement par une société franco-allemande (ÉS et EnBW) et fournit 1,5 MW de puissance. Elle a essaimé à 7 km de là, à Rittershoffen, avec un nouveau forage qui fournit, depuis 2016, 24 MW thermique au circuit de vapeur de l’usine Roquette grâce à un réseau de chaleur de 15 km. Depuis, les projets de forage dans le Bas-Rhin se sont multipliés surtout depuis que les analyses des eaux de forage sur la plateforme de Vendenheim-Reichstett ont montré qu’elles contenaient de 0,15 g à 0,2 g/L de chlorure de lithium. Rappelons que le lithium est actuellement un métal très demandé, dont le prix à la tonne augmente fortement à cause de son utilisation croissante dans les batteries ion–lithium (5). Dans ce cadre un consortium international de recherche EuGeLi (European Geothermal Lithium Brine) s’est formé pour exploiter le procédé propre d’Eramet qui consiste par procédé membranaire à retenir le chlorure puis le transformer en carbonate et à réinjecter les eaux après échange de chaleur et production d’électricité. Les promoteurs du projet veulent implanter un démonstrateur en 2021 et tablent prudemment sur une production annuelle de l’ordre de 1500 tonnes de carbonate de lithium vers 2025.

Restent encore quelques obstacles : les acteurs de la géothermie profonde conditionnent ce développement prometteur à un soutien public pour un complément rémunérateur, situé à 246 € le MWh, voire 200 € si la commercialisation du lithium vient abaisser le prix de revient (6) (notons qu’il y a quelques années le rachat du solaire photovoltaïque était à 600 €/MWh). Il faudra ensuite faire une étude sérieuse du coût de carbonate de lithium au niveau européen sachant cependant qu’une production nationale serait favorable à « l’Airbus européen des batteries ».

Enfin et ce n’est pas le moindre, la mise en place et le fonctionnement de ces forages à proximité du domaine de l’Europole de Strasbourg » a provoqué de micro-secousses sismiques (7) certes inférieures à 2 sur l’échelle de Richter mais qui inquiètent les riverains à tel point que le préfet a demandé un rapport des universitaires et chercheurs du centre de surveillance de l’Institut du globe de Strasbourg.

Souhaitons que ces problèmes économiques et géophysiques ne stoppent pas ces développements que les initiateurs des années 80 que j’ai bien connus n’avaient jamais imaginés même dans leurs rêves.

Jean-Claude Bernier *
Avril 2020

 

* Remerciements à Andrée Harari pour avoir initié cet éditorial.

Pour en savoir plus :
(1) Une électricité 100% renouvelable : rêve ou réalité ?
(2) Stocker l’énergie du Soleil (vidéo)
(3) La géothermie (vidéo)
(4) La maison écologique
(5) Les batteries sodium–ion
(6) Le lithium, nouvel or blanc ?

(7) Gaz de schistes : quels problèmes pour l’environnement et le développement durable ?

 

- Éditorial
mediachimie

Gel hydroalcoolique : pourquoi il faut l’utiliser avec modération et de façon circonstanciée

Le microbiote humainLe microbiote humain ou flore commensale (du latin con massa = manger ensemble) représente 10 fois plus de microorganismes que les cellules humaines qui nous composent : 1014 pour la flore et 1013 pour
...

Le microbiote humain

Le microbiote humain ou flore commensale (du latin con massa = manger ensemble) représente 10 fois plus de microorganismes que les cellules humaines qui nous composent : 1014 pour la flore et 1013 pour les cellules humaines.

Ces bactéries qui composent le microbiote n’ont pas de raison pour la plupart de nous effrayer. Mieux encore, elles agissent comme boucliers contre les agressions extérieures : pathogènes divers, pollution, UV solaire…

Le microbiote est utilisé par l’hôte (l’homme) pour se protéger contre les organismes pathogènes invasifs soit par une action directe anti-infectieuse due à la sécrétion des peptides antibiotiques, soit par une action indirecte à travers le système immunitaire avec lequel il a su bien s’adapter. Tel un professeur, le microbiote éduque en permanence notre système de défense contre les envahisseurs externes.

Il va de soi que les organes humains les mieux équipés sont les intestins et la peau qui sont le plus exposés aux agents extérieurs, les intestins par la nourriture et la peau par les contacts.

Le microbiote de la peau

La peau, organe le plus large du corps (1,8 m2 environ), est un écosystème composé de microorganismes tels que les bactéries (staphylocoques, Corynebacterium…), les champignons (Malasseziae…) et les acariens (Demodex). Toute cette flore est appelée microbiote ou microbiome cutané. Elle vit en symbiose (du grec vivre ensemble) avec notre épiderme, soit à la surface, soit en profondeur.

 

Répartition de la flore dans le corps humain (source : LEEM / source schéma : Dethiefsen et al. Nature 2007)

Tout individu possède sa propre flore microbienne laquelle est repartie en microenvironnements cutanés suivant la classification :

  • zones grasses, par exemple le visage
  • zones humides, par exemple les narines
  • zones sèches, par exemple les paumes de mains

Pour faire court, les paumes de main abritent des microorganismes qui survivent en zones grasses ou humides, principalement des β-protéobacteries.

L’application des gels hydroalcooliques et conséquences

Les gels hydroalcooliques sont composés pour l’essentiel d’alcool éthylique (de 70 à 90 %), d’eau oxygéné, de glycérol et d’eau purifiée. Des alcools autres que l’alcool éthylique peuvent être utilisés.

Dans tous les cas de figure les gels tuent tous les agents infectieux sans discrimination et ne différencient pas le biotope des autres agents exogènes. Cette perturbation peut avoir des conséquences fâcheuses parfois dangereuses pour les individus.

Elle peut conduire entre autres à des eczémas et dermatites atopiques qui fragilisent l’épiderme, le rendant davantage perméable aux agents infectieux exogènes. La barrière externe de la peau présentant des fissures les agents peuvent être directement en contact avec le derme lui-même irrigué par du sang qui peut servir de véhicule de transmission systémique.

Une expérience originale menée par R. Gallo (1) a démontré que des doigts ainsi désinfectés peuvent facilement par la suite être surinfectés par des bactéries telles que le streptocoque du groupe A ou le staphylocoque.

Cette réalité dépend des individus, leur état de santé et concerne davantage les personnes âgées à peau fine et fragile dû à l’âge (peau en général sèche, dite papier de cigarette, facilement irritée).

Que dois-je faire ?

Il faut suivre strictement les règles d’ANSM (Agence nationale de sécurité du médicament et des produits de santé).

L’ANSM recommande l’utilisation de solutions et gels hydroalcooliques EN L’ABSENCE DE POINT D’EAU DISPONIBLE : transports en commun…

Dans tous les cas il faut privilégier le lavage de mains lorsqu’un point d’eau potable est disponible.

Un dernier conseil : n’utiliser que de savons avec des agents surfactants ou tensioactifs neutres.

Les virus comme le Coronavirus (2) ne sont pas considérés comme des organismes vivants mais plutôt comme des agrégats ordonnés des molécules chimiques. Ces molécules peuvent être de nature hydrophile (qui aiment l’eau), de nature hydrophobe (qui ont peur de l’eau) ou amphiphiles (aimant l’eau et la graisse).

Dans tous les cas de figure, les molécules hydrophiles sont entrainées par l’eau, les molécules hydrophobes se complexent avec les agents surfactants existants dans les savons pour être par la suite entrainées par l’eau. Pour les amphiphiles cela va de soi (3).

Et si un lavage pas assez méticuleux n’a pas permis d’entrainer l’ensemble des particules nous pouvons considérer qu’il ne reste du virus que quelques débris moléculaires incapables d’assurer les fonctions du virus, c’est-à-dire infecter les organes cibles pour se démultiplier et nous coloniser.

Pr. Constantin Agouridas
Mars 2020

Pour en savoir plus :
(1) Le microbiote cutané : le poids lourd sort de l’ombre, J. di Domizio et al., Rev Med Suisse, 2016, 12:660-664
Status report from the scientific panel on Antibiotic use in dermatology of the American Acne and Rosacea Society, J.Q. Del Rosso et al., J. Clin. Aesthet. Dermatol., 2016
Epithelial antimicrobial defence of the skin and intestine, R. Gallo et L.V. Hooper, Nat. Rev. Immunol., 2012 Jun 25;12(7):503-16
(2) Le coronavirus, un défi pour la chimie du vivant
(3) La chimie et les produits d’hygiène et de soins corporels (Chimie et… Junior)

Télécharger les Indications pour l’hygiène des mains sur le site de l'OMS

- Éditorial
mediachimie

Le coronavirus, un défi pour la chimie du vivant

La maladie à coronavirus COVID-19, apparue en décembre 2019 à Wuhan en Chine sur un marché de la ville, a surpris les autorités chinoises par la rapidité de sa propagation. Elle a très vite touché des centaines
...

La maladie à coronavirus COVID-19, apparue en décembre 2019 à Wuhan en Chine sur un marché de la ville, a surpris les autorités chinoises par la rapidité de sa propagation. Elle a très vite touché des centaines d’habitants. Malgré la quarantaine qui a confiné 11 millions de Chinois chez eux fin janvier, la contagion a gagné plusieurs autres villes et d’autres foyers se sont fait jour non seulement en Chine mais au Japon, en Corée du Sud, en Iran, et tout récemment en Italie du Nord. Fin février, ce sont plus de 82 000 malades atteints et 2800 décès dans le monde, et outre les villes de la province de Hubei dont Wuhan est la capitale, plusieurs villes d’Italie sont fermées. Le patron de l’OMS s’inquiète d’une pandémie qui pourrait s’étendre mondialement, et la France, comme d’autres pays, s’y prépare.

Qu’est-ce qu’un virus ?

Plus petit que 100 nanomètres un virus ne peut pas être considéré comme un organisme vivant car il ne peut pas se répliquer seul. Il est constitué d’un assemblage de molécules, pour l’essentiel des ADN ou ARN et des protéines. Lors du contact avec un organisme vivant (homme, animal, plante…) le virus va utiliser la machinerie moléculaire de cet organisme vivant pour se répliquer et se démultiplier en plusieurs copies qui vont coloniser plusieurs centres vitaux de son hôte : voies respiratoires, intestins, sang…

Comment le virus nous attaque ?

Les coronavirus sont presque toujours d’origine animale, l’habitude chinoise d’acheter sur les marchés de petits animaux vivants comme les poissons, les volailles, les petits mammifères, confinés dans un espace restreint, ont sûrement développé une énorme charge virale. De plus la concentration des habitants en mégapoles de plusieurs millions d’habitants a probablement favorisé la propagation du virus. Il faut y ajouter le fort développement de la Chine depuis plusieurs années qui entraîne des migrations humaines nationales et internationales dans tous les secteurs : commercial, technique et scientifique.

Les coronavirus doivent leur nom à une petite couronne de protéines pointues dites spicules. Il y a deux sortes de coronavirus : ceux peu pathogènes qui circulent en France chaque année par temps froid et humide en hiver et disparaissent en été, provoquant les rhumes, laryngites et grippes saisonnières et ceux au comportement hautement pathogène dont deux sont déjà connus le SARS-CoV en 2003 responsable du SRAS (Syndrome Respiratoire Aigu Sévère) et le MERS-CoV responsable du MERS (Middle East respiratory syndrome) en 2012, qui ont fait des victimes en Chine et au Moyen-Orient. Ce nouveau virus, temporairement appelé en janvier 2019–nCoV et définitivement nommé SARS-CoV-2 le 11 février 2020 par l’ICTV (Comité international de taxonomie des virus), était inconnu jusqu’à ce que plusieurs laboratoires dans le monde dont celui de l’Institut Pasteur en France l’isolent, grâce aux prélèvements positifs. Le laboratoire parisien commence à le cultiver sur des souches pathogènes dès le 24 janvier 2020. La collaboration internationale a alors permis très rapidement le séquençage complet du génome de ce coronavirus et ainsi de commencer à étudier sa structure pour comprendre la façon dont il nous attaque (1).

Le virus transmis par des postillons ou des aérosols émis par les malades pénètre dans les cellules nasales. Grâce à cette couronne de protéines pointues (spicules) il se verrouille sur une protéine de surface des cellules appelée récepteur. On peut aussi assimiler les spicules à une « clé » qui se fixe sur la « serrure » du récepteur (2). Le virus libère alors via une vésicule dite endosome son ARN (3) dans le cytoplasme de la cellule qui produit alors les protéines virales nécessaires à sa réplication. Avec son enzyme viral il fait alors de multiples copies de son ARN et donne naissance à plusieurs virus répliqués qui s’échappent de la cellule pour attaquer d’autres cellules et ceci en quelques heures.

Comment réagir et se protéger ?

Grâce à la rapidité du séquençage de son génome, on a pu remonter à la structure du coronavirus. Il y a une semaine une équipe de chercheurs de l’université d’Austin (Texas, USA) a pu mettre au point sa structure 3D et de la partie des spicules (la clé) en utilisant la cryomicroscopie électronique moyen d’étude dont les inventeurs avaient obtenu le prix Nobel de chimie 2017 (4). On peut par ce moyen obtenir de multitudes d’images des molécules figées à basse température et même en faire de petits films. Cette étude a montré de plus que la porte d’entrée dans les cellules humaines était bien le récepteur ACE2 déjà identifié lors du SRAS, mais la « clé » était ici semble-t-il encore mieux adaptée à sa serrure, ce qui pourrait expliquer la rapidité de sa propagation.

Les pistes pour traiter les malades sont alors de deux types :

  • des antiviraux qui empêchent la réplication du virus à l’intérieur des cellules comme la chloroquine, une molécule utilisée comme antipaludique et qui bloque la capacité du virus à acidifier les endosomes pour libérer l’ARN, ou le remdesivir qui agit comme un nucléotide sur l’élément constitutif de l’ARN, en s’immisçant dans la séquence copiée, créant une « faute de frappe » et la rendant inutilisable pour la réplication (5).
  • des inhibiteurs de protéase déjà testés pour le traitement du VIH, du SRAS et du MERS. Ils bloquent la capacité de la protéine « protease » à couper une longue protéine non fonctionnelle en protéines plus petites nécessaires à la réplication du virus.

L’immunologie par biosynthèse consiste à produire des anticorps dans la cellule en y transférant deux ADN, ces deux ADN seront transcrits en ARN messagers qui vont migrer dans le cytosol et s’ajouteront à la protéine de surface empêchant le virus de se fixer sur sa cible (si la serrure change la clé ne marche plus) (6). C’est aussi une piste pour la vaccination, comme celle d’injecter des anticorps venus de malades guéris. Pour l’instant, les traitements des malades utilisent des molécules comme la chloroquine, le remdesivir ou des inhibiteurs tels que le lopinavir ou le ritonavir et l’interféron déjà connus et utilisés dans les cas de syndromes respiratoires aigus et donnant de bons résultats comme à Bordeaux sur le malade qui est sorti récemment de clinique. Pour un éventuel vaccin il faudra sans doute attendre plusieurs années malgré le nombre de laboratoires de recherche en biochimie et pharmacie qui se sont mis sur le sujet.

En France un plan de veille et de prévention est mis en place en mobilisant plus de 100 hôpitaux et en passant les laboratoires d’analyses à une capacité de plusieurs milliers de tests de dépistage par jour. Une bonne règle personnelle d’hygiène est de se laver les mains régulièrement et de protéger la bouche en cas de toux, cela vous évitera sans doute déjà le rhume ou la grippe de saison (7).

Jean-Claude Bernier, Constantin Agouridas et Catherine Vialle
27 février 2020

Pour en savoir plus

(1) Chimie du et pour le vivant : objectif santé
(2) La chimie supramoléculaire et ses formes modernes
(3) Cibler l’ADN : pour la compréhension du vivant
(4) Le prix Nobel 2017
(5) Molécules hybrides pour de nouveaux médicaments : mythe ou réalité ?
(6) De la biologie de synthèse aux biomédicaments
(7) La chimie et les produits d’hygiène et de soins corporels (Chimie et… Junior)

 

L'image d'illustration, réalisée par Centers for Disease Control and Prevention (CDC), révèle la morphologie des coronavirus.

- Éditorial
mediachimie

La Chimie et ses emplois sont au bois de Vincennes

Les 28 et 29 février 2020 se tient, au parc floral de Paris au bois de Vincennes, le Village de la chimie des sciences de la nature et de la vie Les collégiens, lycéens et étudiants avec leurs professeurs ou leurs parents
...

Les 28 et 29 février 2020 se tient, au parc floral de Paris au bois de Vincennes, le

Village de la chimie des sciences de la nature et de la vie

Les collégiens, lycéens et étudiants avec leurs professeurs ou leurs parents sont comme chaque année les bienvenus, et nombreux sont ceux qui grâce aux différents espaces et stands vont pouvoir trouver une orientation scolaire, un parcours professionnel, un stage en entreprise, un futur job.

Comment rendre efficace votre venue ?

  • 1 – En rencontrant les professionnels à votre disposition : ingénieurs, recruteurs, techniciens de grandes entreprises internationales, de PME, de start–up, d’organismes de recherche ; ils vous parleront métiers et carrières.
  • 2 – En vous renseignant auprès des établissements de formation et des filières : Bac Pro, BTS, DUT, Universités, Écoles d’ingénieurs, qui vous accueilleront au cours de ces deux journées.
  • 3 – En préparant votre future insertion professionnelle grâce aux ateliers pour peaufiner votre CV, utiliser mieux internet, bâtir ou améliorer votre entretien d’embauche,

Vous aurez aussi la possibilité d’écouter et de vous instruire, au cours des conférences d’experts ou de chercheurs en chimie, sur le traitement des surfaces, l’innovation dans les verres, une méthode révolutionnaire de dépollution des sols.

Ne loupez pas les démonstrations spectaculaires de réactions chimiques et une découverte amusante des éléments de la classification périodique.

Enfin Jean Marie Lehn prix Nobel de chimie sera présent à l’occasion de la remise des prix des Olympiades de la chimie en Île-de-France et parlera de « la chimie de la vie ».

Venez en famille ou avec vos professeurs à Vincennes. L’industrie chimique emploie 165 000 salariés, et il y a de très nombreux chimistes dans d’autres industries comme la pharmacie, la métallurgie, l’automobile, l’aéronautique, la plasturgie, les cosmétiques et parfums. Cela représente chaque année des dizaines de milliers d’embauches. De plus, avec le développement de l’alternance et de l’apprentissage, de nombreuses possibilités sont offertes : venez à la table ronde spécialement consacrée à ces voies le samedi 29.

Préparez votre venue avec votre classe ou vos parents en consultant sur Mediachimie.org l’espace métiers, les fiches métiers par fonction et domaine d’activité et la série de fiches « Les chimistes dans… ». Vous y découvrirez des dizaines de métiers de l’agent de laboratoire à l’ingénieur procédé, du biochimiste au commercial, du responsable du laboratoire d’analyse au chercheur, tout un panel de métiers est décrit.

Mediachimie sera aussi présent au village (stand M6) et une équipe de Mediachimie assurera deux conférences / ateliers : « La chimie, une grande diversité de métiers riches d’avenir » les vendredi et samedi à 14h.

Jean-Claude Bernier et Catherine Vialle
Février 2020

Plus d'informations : Village de la chimie des sciences de la nature et de la vie

#villagechimie
#gracealachimie

Préparez votre venue au Village de la chimie en testant vos connaissances sur les métiers (quiz)

- Éditorial
mediachimie

Cette chimie qui a illuminé nos villes

Les marchés de Noël ont déménagé, les décorations et guirlandes de nos rues sur le point d’être démontées se balancent encore, et alors que sonne encore dans nos têtes le tube désenchanté de Gold « Ville de lumière,
...

Les marchés de Noël ont déménagé, les décorations et guirlandes de nos rues sur le point d’être démontées se balancent encore, et alors que sonne encore dans nos têtes le tube désenchanté de Gold « Ville de lumière, j’ai besoin de toi ! », peu savent la quantité de découvertes et de travaux qui ont conduit à de telles profusions de beauté visuelle (1).

Oublions les vieilles lampes à filaments aux verres colorés qui se balançaient entre les platanes des places des villages le soir du 14 juillet. La lampe à incandescence inventée par Thomas Edison avec filament de carbone en 1879 puis de tungstène au XXe siècle est maintenant bannie de la vente au profit des ampoules à basse consommation ou mieux encore des LED (Light Emetting Diode) qui ont envahi toutes les décorations lumineuses de Noël.

L’émission de lumière par des diodes semi-conductrices de SiC était connu depuis 1907 mais ce n’est qu’en 1929 qu’un brevet sur le principe d’émission fut déposé et il fallut plus de trente ans pour qu’une première LED donne une émission dans le rouge en 1962 (2).

Le principe des émissions par des semi-conducteurs électroluminescents est assez simple. Ils sont caractérisés par une bande de valence et une bande de conduction séparées par un « gap » d’énergie Eg. Lorsqu’un courant électrique active le semi-conducteur, un déséquilibre se crée entre les deux bandes et les électrons de la bande de conduction se combinent avec les trous créés dans la bande de valence en émettant un photon de fréquence ν tel que hν= Eg liée à la valeur du gap. Les chimistes du solide ont fait leur gamme en partant des semi-conducteurs de type III-V (3) pour obtenir du rouge avec GaAs et AlGaAs, du jaune avec GaAsP, du vert pour GaN. Ce n’est qu’en 1993 que des chercheurs japonais, prix Nobel en 2014 (4), ont obtenu la LED bleu avec la composition InGaN permettant grâce à une émission vers 480 nm de relancer la commercialisation des lecteurs sur support optique des DVD et de relever le défi économique de la lumière blanche pour le grand public. En effet plutôt que la recomposer avec trois LED bleu-rouge-vert on utilise maintenant l’émission d’une LED bleu encapsulée dans un dôme de silicone sur lequel on a une couche mince de luminophore émettant dans le jaune dont la composition est par exemple à base de YAG dopé au cérium (Y3Al5O12 : Ce3+). Les recherches actuelles tendent à diminuer la proportion d’émission bleue qui donne une lumière blanche trop froide pour une lumière plus chaude dans le jaune avec des luminophores (5) dopés à l’europium Eu2+ ou des oxysulfures avec des défauts structuraux pour limiter le recours aux lanthanides.

Les LED sont concurrencées par les OLED (Organic Light Emetting Diode) (6) qui sont constituées d’une couche mince de polymère semi-conducteur entre deux électrodes. Ces semi-conducteurs organiques sont caractérisés par l’alternance de simples liaisons et doubles liaisons carbones dites π-conjuguées. Les orbitales moléculaires ont alors deux niveaux, la plus basse est liante (HOMO), la plus haute antiliante (LUMO) qui s’assimilent aux deux bandes des semi-conducteurs métalliques avec les mêmes processus de recombinaison électrons-trous s’accompagnant d’émission de lumière. Si les OLED ont conquis les écrans plats des télévisions et des smartphones, elles ne sont pas encore concurrentielles pour les décorations lumineuses.

Mais la chimie est encore présente lors des nuits du nouvel an avec les incontournables feux d’artifices qui enflamment le ciel des métropoles (7). Leur principe est lié à la réaction chimique de combustion qui mêle un oxydant (nitrate, perchlorate) et un réducteur (carbone, soufre, magnésium) avec fort dégagement de chaleur et de gaz. Pour colorer les flammes on y ajoute des sels métalliques ; de strontium pour le rouge, sodium pour le jaune, baryum pour le vert, cuivre pour le bleu et poudres de magnésium ou aluminium pour le blanc éclatant. Notons que le tir et les explosions en altitude imposent que ce soient des professionnels qui sont en charge de ces feux et qu’il est toujours déconseillé que de simples amateurs s’y impliquent car leur sécurité est en jeu (8). C’est avec quelques regrets que janvier moins lumineux se déroule. Adieu la chimie des couleurs… À la fin de l’année 2020 !

Jean-Claude Bernier et Catherine Vialle
Janvier 2020

Pour en savoir plus :
(1) Lumière et couleurs (vidéo)
(2) EnLEDissez-vous !
(3) Les radars des avions Rafale (Chimie et… junior)
(4) Un prix Nobel éclairé
(5) Fluorescence (vidéo)
(6) Les diodes électroluminescentes organiques : des sources « plates » de lumière
(7) Les feux d’artifice des frères Proust (Petites histoires de la chimie)
(8) Une enquête explosive (Chimie et… junior)
 

- Éditorial
mediachimie

Lubrizol et les sites Seveso

Deux mois après l’incendie de l’usine Lubrizol nous avons un peu de recul pour revenir sur les risques des usines fabriquant ou stockant des produits chimiques (1). Depuis l’accident ayant frappé une ville du nord de
...

Deux mois après l’incendie de l’usine Lubrizol nous avons un peu de recul pour revenir sur les risques des usines fabriquant ou stockant des produits chimiques (1). Depuis l’accident ayant frappé une ville du nord de l’Italie, Seveso, consécutive à une fuite de dioxine d’un site industriel voisin, l’Europe a imposé un haut niveau de prévention pour les sites présentant des risques majeurs. Le classement Seveso identifie pour l’environnement les risques suivants :- les effets de surpression (souffle d’une explosion) –les effets thermiques (rayonnement d’un incendie) – les effets toxiques (rejets de polluants) (2).

C’est ainsi qu’en France 1312 installations industrielles sont classées Seveso dont 607 seuil bas et 705 seuil haut dont Lubrizol de Petit-Quevilly. Après la catastrophe AZF à Toulouse qui fut bien plus meurtrière, la loi Bachelot en 2003 a institué en France les plans de prévention des risques technologiques (PPRT) qui visent à limiter l’urbanisation autour des sites dangereux. Comme hélas les municipalités jusque-là avaient laissé les constructions gagner les terrains proches, plus de 180 PPRT imposent des travaux de protection des habitations voisines.

Dans le cas de Lubrizol, soumis à une surveillance très stricte de la part de la DREAL Normandie comme ICPE (installation classée pour la protection de l’environnement), de nombreuses visites d’ingénieurs et de cadres pompiers vérifient la conformité et l’application des règles de sécurité (3). Et cependant fin septembre plusieurs milliers de tonnes de produits sont partis en fumée. Quels sont ces produits ? Dans la liste des 10 tonnages les plus importants on relève principalement des alcanes en C15 – C20, des graisses en C20 – C50 issus des distillats du pétrole, des additifs et des sels détergents pour l’essence comportant des dérivés d’amines, des sulfides ou des phosphates. Des lubrifiants (4) comportant des dithiophosphates, des oléfines et des produits insecticides avec des polysulfides. Par combustion ces produits vont émettre principalement CO, CO2 et H2O, mais aussi NO2, NOx et SO2, H2S, P2O5, ZnO et CaO. Mais comme les oxydations sont incomplètes également des suies principalement composées de carbone C qui vont composer ce nuage noir impressionnant de plusieurs kilomètres et se déposer aux alentours.

Les analyses de l’air sur Rouen menées par Atmo Normandie les 27 et 28 septembre sur NO2, SO2, CO, H2S et les PM10, ne montrent pas de valeurs supérieures aux moyennes habituelles dans l’agglomération (5). Des prélèvements sur le site de Lubrizol et les dosages sur le toluène, l’éthylbenzène, H2S et plusieurs COV (composés organiques volatils) donnent des valeurs en µg/m3 inférieures aux valeurs de référence d’exposition aigue sauf pour le benzène très largement au- dessus du seuil de 30µg. Raison pour laquelle il a fallu protéger la trentaine de personnel Lubrizol d’intervention et les pompiers. Depuis les prélèvements et analyses autour du site et sur le trajet du nuage faits par canisters, lingettes et jauges atmosphériques n’ont pas non plus donné des valeurs supérieures au seuil de dangerosité notamment sur les HAP (hydrocarbures aromatiques polycycliques), COV et dioxine. Les analyses sanguines opérées sur les sauveteurs n’ont rien décelé d’anormal une semaine après leur intervention.

Ces résultats n’empêchent pas une partie des Rouennais qui ont souffert de nausées (*), de problèmes respiratoires (6) et de nombreux maraîchers et agriculteurs qui ont perdu plus de deux semaines de ventes de légumes ou produits laitiers par mesure de précaution de s’élever contre la concentration industrielle de la banlieue ouest de Rouen.

Il n’est pas évident de rendre intelligible pour le grand public les résultats des analyses chimiques, surtout à l’heure où la parole des élus, des hauts fonctionnaires de l’État et des experts est systématiquement dévaluée et mise en cause. Même si les produits de Lubrizol sont indispensables dans de nombreux secteurs en particulier pour le fonctionnement des moteurs et les carburants automobiles où leur pénurie se fait déjà sentir, il n’est pas question pour l’instant d’imaginer une reprise possible d’activité sans que les règles ICPE (installation classée pour la protection de l'environnement) soient à nouveau respectées et que l’autorisation d’exercer soit donnée par le CODERST (conseil départemental de l'environnement et des risques sanitaires et technologiques) et le Préfet.

Communication difficile en ces circonstances, mais pour nous aussi chimistes, la communication est difficile et souvent insuffisante. Nous ne disons pas assez que l’industrie chimique (7) est indispensable à la fabrication d’objets de tous les jours, médicaments, shampoings, textiles, carburants, automobiles… Nous nous cachons dans l’ombre. Sur l’hexagone 3300 entreprises chimiques sont implantées avec 6000 sites de production dont 400 classés Seveso. C’est l’industrie qui est la plus réglementée. Depuis 2003, 500 millions € ont été investis pour la mise en place des PPRT, 300 millions pour la modernisation des installations et chaque année, 600 millions € (20% des investissements) sont consacrés à la sécurité et l’environnement.

Nous manquons de communicants et de communication pour rappeler que le secteur chimie est indispensable à l’économie avec 220000 salariés (8) qui contribuent au bien-être de nos concitoyens et à la balance commerciale avec plus de 60 milliards d’exportation.

(*) Sur le site il y avait une unité de fabrication de mercaptan à forte odeur écœurante. Le mercaptan est notamment utilisés à quelques ppm dans le gaz de ville pour détecter immédiatement une fuite.

Jean-Claude Bernier
Décembre 2019

Pour en savoir plus sur Mediachimie.org :
(1) Le paradoxe apparent de REACH : contrainte et source d’innovation pour la chimie
(2) La compétitivité plombée par un excès de règlementations ?
(3) Enquête technique après accidents industriels
(4) Les lubrifiants - « un point sur… »
(5) Techniques analytiques et chimie de l’environnement
(6) Pollution : comment améliorer la qualité de l’air dans nos habitations
(7) Pour une industrie chimique propre et durable (Chimie et… junior)
(8) Les chimistes dans : L’industrie chimique

Résultats d’analyses :
Lubrizol: explications par Atmo Normandie
Rouen : le point sur la situation sur le site gouvernement.fr. L’analyse des canisters est disponible ici à la date du 28 septembre 2019.