- Éditorial
mediachimie

La transition énergétique ne tient qu’à un fil : les réseaux électriques

Le dernier rapport de l’agence Internationale de l’Energie (AIE) attire notre attention sur le problème des réseaux électriques (1) qui sans nouveaux investissements et développements de réseaux intelligents vont bloquer
...

Le dernier rapport de l’agence Internationale de l’Energie (AIE) attire notre attention sur le problème des réseaux électriques (1) qui sans nouveaux investissements et développements de réseaux intelligents vont bloquer les transitions énergétiques. En effet, les transitions énergétiques en Europe et dans le monde s’appuient entre autres sur une électrification bas carbone. L’électricité va remplacer le gaz, elle va propulser les voitures particulières et les camions, les projets hydrogène vont multiplier les électrolyseurs, les champs d’éoliennes off-shore en mer et les fermes photovoltaïques dans les déserts exigent des liaisons et de longs réseaux fiables et intelligents (2).

Il existe au niveau mondial 80 millions de kilomètres de lignes dont 7% pour le transport longue distance (THT 400 kV et HT 225 kV)* et 93% pour la distribution (MT 15 à 30 kV et BT 400 et 240 V)* au total cela représente plus de 100 allers -retours terre – lune ! Pour la France on identifie environ 100 000 km de lignes HT et environ 580 000 km de lignes MT et 650 000 km de lignes BT dont à peu près 213 000 km souterraines.
La transition énergétique va augmenter l’électrification bas carbone du chauffage, de l’industrie, du transport (3). Dans la consommation finale d’énergie mondiale, l’électricité qui représentait 21% en 2022, devrait monter jusqu’à 35% en 2050. D’où le risque de ne pouvoir faire face à ces progressions si on ne peut relier par un conducteur la production d’électricité au consommateur. L’Allemagne s’est trouvée dans ce cas où sa production éolienne basée prioritairement dans le nord ne pouvait être acheminée dans les zones de consommation du sud. On peut ajouter que, dans les pays européens où la densité de population est plutôt forte, l’implantation d’une ligne haute tension (225 kV) peut prendre 6 à 12 ans pour obtenir les permis et être construite. C’est bien plus rapide en Chine et en Inde.

Les conducteurs

L’AIE estime vital de construire et rénover environ 80 millions de kilomètres de réseau, c’est-à-dire l’équivalent du réseau actuel qui serait doublé d’ici 2040. C’est demander le doublement des investissements actuels et aussi des ressources en matériaux.

En effet, quels sont les matériaux nécessaires pour acheminer l’électricité de la centrale à votre prise de courant ? Les grands spécialistes des câbles font appel à deux bons conducteurs : le cuivre Cu de conductivité ρ  = 59 106 S.m-1 l’Aluminium Al ρ = 37 106 S.m-1. L’aluminium est moins bon conducteur mais il est plus léger d=2,7 que le cuivre d= 8,9 et d’autre part les prix sont nettement différents 8 €/kg pour le cuivre et 2 €/kg pour l’aluminium. C’est pourquoi les alliages d’aluminium comportant comme additifs Mg et Si, parfois renforcés acier, sont utilisés pour les lignes aériennes HT, dites de transport, alors que le cuivre est plus utilisé pour les lignes basse tension (BT) dites de distribution et les lignes enterrées ou sous-marines (4).

Y aura-t-il suffisamment de métaux pour conduire cette (r)évolution ?

Le calcul est complexe : plus la tension est forte moins la section du câble est grande pour une puissance délivrée et donc le poids de conducteur par kilomètre est plus faible (5).

Pour le transport en haute tension par voie aérienne en fil d’aluminium il faut : 11 kg/Mw/km alors que pour la distribution en basse tension il faut 65 kg/Mw/km. Pour des conducteurs en cuivre il faut entre 101 kg/Mw/km et 438 kg/Mw/km suivant le transport ou la distribution de l’électricité. Une extrapolation sur les 88 millions de km de lignes à doubler dont 7% pour le transport et 93% pour la distribution donne respectivement 62 000 tonnes et 4,86 Mt d’aluminium et si la moitié de la distribution en basse tension est faite avec le cuivre il en faut 16,3 Mt.

Rappelons que les productions mondiales sont 67 Mt pour Al et 26 Mt pour le Cu. Pour la France on compte 100 000 km de lignes haute tension gérée par RTE, 586 000 km de moyenne tension (15-30 kV) et 650 000 km de basse tension (400 et 230 V) dont 230 000 km enterrées gérées par EDF. L’estimation des besoins en conducteur conduit à environ 40 000 tonnes d’Al et 286 000 tonnes de Cu s’il fallait doubler le réseau. Notons que dans l’infrastructure d’un réseau il y a aussi les pylônes (6) qui supportent le poids des lignes, ils sont environ 100 000. Ils peuvent atteindre 90 mètres en acier avec une dizaine d’isolateurs en céramique pour la THT. Ils relient entre eux les nœuds de connexion et surtout les postes de transformateurs HT /BT qui comportent des tonnes d’acier spéciaux fer silicium (3%) à grains orientés et à forte perméabilité magnétique, leur nombre est d’environ 4000 en France. D’ailleurs Enedis envisage de doubler ses investissements à 5,5 Mrds € par an comme RTE d’ici 2040 approchant des 10 Mrds € annuels pour le réseau électrique, coûts cachés de la transition.

Et la chimie où est-elle ?

Elle est déjà bien présente dans la chimie métallurgique de préparation de l’aluminium et du cuivre de qualités électriques, mais si vous avez déjà épluché un fil électrique vous avez constaté qu’autour de l’âme en cuivre une enveloppe plastique (7) jouait un rôle de protection et d’isolant. On utilise le polyéthylène pour les THT et HT, il peut être réticulé si on cherche une bonne résistance au froid (lignes de montagne). Les copolymères éthylène /propylène sont plus utilisés pour les moyennes et basses tensions. Les couches de caoutchouc et silicones qui ont de très bonnes résistances aux basses et hautes températures sont souvent présentes pour les câbles enterrés ou sous-marins.

Dans les transformateurs, outre les papiers siliconés de l’isolation, on trouve les huiles isolantes qui servent aussi de fluide caloporteur jusqu’aux radiateurs externes pour éliminer la chaleur due aux effets Joule et aux pertes par courants de Foucault. Ces huiles autrefois à base de PCB (polychlorobiphényle) remarquablement stables mais toxiques pour l’environnement ont été remplacées par des huiles mélangeant naphtènes (aromatiques) et alcènes à haut point éclair pour éviter les incendies.

Le prix des conducteurs, des isolants plastiques, des aciers à grains orientés (GO), des pylônes, des moyens de construction a explosé en 10 ans. Alors que les investissements dans les énergies renouvelables ont doublé en 10 ans, ceux en faveur des réseaux électriques sont restés stables. On a augmenté le volume du liquide dans le réservoir mais on n’a pas changé le petit robinet. Faute de prévision et dans un contexte de sous-investissement dans les réseaux s’est créé un goulot d’étranglement et on entre en dépendance du gaz et du charbon à la merci de coupures de courant dont l’impact économique est encore bien plus grand.

Jean-Claude Bernier
novembre 2023

 

*Très Haute Tension THT, Haut Tension HT, MT Moyenne Tension, BT Basse Tension

 

Pour en savoir plus
(1) Electricty grids and secure energy transitions (AIE) Octobre 2023
(2) Réseaux de transport de l’électricité et transition énergétique de S. Henry, article et conférence, Colloque Chimie et enjeux énergétiques, Fondation de la Maison de la chimie (2012)
(3) Le transport ou le stockage de l’énergie électrique, de C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, in La chimie, l’énergie et le climat, collection Chimie et... Junior, EDP Sciences, Fondation de la Maison de la Chimie (2014), ISBN : 978-2-7598-2098-6 (2014)
(4) Câble High-Tech en PACA (vidéo, Des Idées plein la tech’) Virtuel / Universcience / Fondation Internationale de la Maison de la Chimie
(5) Les métaux stratégiques pour l’énergie, de B. Goffé, article et conférence, Colloque Chimie et enjeux énergétiques, Fondation de la Maison de la chimie (2012)
(6) Zoom sur quelques aspects de la corrosion des ouvrages d’art, de J.-P. Foulon, Zoom sur… Mediachimie.org
(7) Polymères stratégiques, sensibles pour l’industrie : bioressources, recyclage, quelle stratégie ?, de D. Bortzmeyer, article et conférence, Colloque Chimie et matériaux stratégiques, Fondation de la Maison de la chimie (2022)

 

Crédit illustration : Lignes à haute tension (Sagy, Val d'Oise), France, Spedona/JH Mora, travail personnel / Wikimedia Commons (licence CC BY-SA 3.0)

- Éditorial
mediachimie

Le sport, c’est de la chimie

Cette année la Fête de la science, année préolympique oblige, est consacrée au sport. La Fondation de la Maison de la Chimie et Mediachimie.org ont déjà largement étoffé le sujet. Rappelons le colloque « La Chimie et le
...

Cette année la Fête de la science, année préolympique oblige, est consacrée au sport. La Fondation de la Maison de la Chimie et Mediachimie.org ont déjà largement étoffé le sujet. Rappelons le colloque « La Chimie et le sport » de mars 2010 qui va être renouvelé et actualisé par le prochain colloque en février 2024 « Chimie et sports olympiques ». En effet, le sport par ses multiples facettes fait appel à la chimie. C’est d’abord dans notre corps avec tous nos systèmes biologiques, puis dans notre cerveau où des hormones sont libérées, le tout avec une alimentation équilibrée et sans dopage. Mais si les performances s’améliorent c’est aussi grâce aux nouveaux matériaux.

La machine biologique

Quand on a une activité sportive nos muscles ont besoin d’énergie (1) (2). Cette énergie est stockée et transportée dans nos cellules sous forme de molécules d’ATP (adénosine triphosphate) qui par hydrolyse va donner un phosphate inorganique Pi et l’ADP (adénosine diphosphate) avec surtout de l’énergie libérée utilisable par l’organisme. L’ATP nous est fournie à chaque fois que nous respirons par l’oxygène transporté dans nos milliards de cellules et par le glucose ou les acides gras qui viennent de notre alimentation et sont transformés en ATP. Nos muscles sont composés de fibres où se juxtaposent deux types de protéines, l’actine et la myosine. Lorsque le cerveau commande un mouvement, le message acheminé vers le muscle comporte l’ATP mais aussi des ions calcium qui vont agir sur ces deux protéines et commander la contraction ou le relâchement. Pour que notre corps marche bien pour pratiquer un sport retenons qu’il faut de l’oxygène et donc bien respirer et des sucres et des protéines, donc bien s’alimenter.

Le cerveau

Ces molécules ne sont pas seules motrices pour la pratique du sport, il y a aussi des hormones qui sont fabriquées dans le cerveau (3) surtout par deux glandes, l’hypophyse et l’hypothalamus. C’est par exemple l’endorphine qui donne une sensation de bien-être. Notons aussi que pour les grands champions qui dépassent leurs limites les endorphines comme toute morphine a une capacité analgésique qui masque la douleur d’un effort intense (4). Une autre hormone, la dopamine, procure une sensation de plaisir et diminue la fatigue. On voit souvent son action lorsqu’un grand champion a gagné une course : son bonheur efface un peu les séquelles de son effort final. N’oublions pas non plus l’adrénaline que procure toujours un challenge que l’on se donne : elle augmente notre résistance au stress. Enfin une dernière sécrétion, celle de la sérotonine qui a une action sur la détente et le sommeil. Ce sont évidemment des libérations exacerbées par des entrainements intenses de nos grands champion. Mais nous en bénéficions lorsque nous pratiquons à notre niveau (5) un sport, des molécules qui ont des effets bénéfiques sur notre santé mentale et notre santé tout court !

Les matériaux de la performance

Usain Bolt est recordman du 100 m grâce à ses capacités naturelles et à son entrainement, mais aussi grâce aux super-chaussures (6) avec au moins 4 couches : une semelle externe élastique avec des crampons légers, une semelle interne rigide en composite carbone – carbone, une couche de mousse polyester, une tige et un tissu qui maintiennent le pied en PTFE. Les records en demi-fond le doivent aussi aux nouvelles pistes d’athlétisme en polyuréthane disposant en sous-couches de granulés de caoutchouc ménageant de petites poches d’air. La piste absorbe l’énergie mais le renvoie au coureur avec un effet « trampolino ».

Si Armand Duplantis a franchi 6,23 mètres au saut à la perche en septembre, c’est bien sûr dû à ses aptitudes acrobatiques et à son entrainement, mais aussi à sa perche fabriquée en matériau composite (7) avec des fibres de carbone noyées dans des polyesters. S’il avait eu un bambou ou une perche en aluminium il aurait plafonné à 4 ou 5 mètres.

Oui l’entrainement est essentiel mais la chimie des matériaux booste les performances en athlétisme mais aussi en ski, en canoé kayak, en voile et en vélo.

Pour courir il faut de l’essence

Vous avez déjà entendu ces commentaires de reporters sportifs concernant un battu à l’arrivée : « oui il n’avait plus de jus ». En effet il y a a nécessité pour les sports qui demandent un effort de longue durée, vélo, tennis, marathon…, d’avoir une bonne alimentation avant, durant et après l’effort : une bonne hydratation, des protéines légères ou des sucres assimilables rapidement durant l’effort et avant la compétition des sucres lents ou au contraire un aliment hyper protéiné et sans sucres. Eviter les boissons vitaminées et surtout les aliments dits « dopants ». Il y a toujours suivant les disciplines des soupçons de dopages, souvent avec des molécules de médicaments que l’on détourne de leur usage. Heureusement de plus en plus les fédérations internationales augmentent le nombre de substances interdites et les contrôles. La chimie analytique a développé pour cela des moyens de détection.

Bougez, courez, pédalez, sautez, lancez, jouez, vous allez déjouer le stress, vous éloignerez les maladies cardiovasculaires, l’obésité, l’ostéoporose et le « mal de dos ». En un mot vous vivrez mieux !

Octobre 2023
Jean-Claude Bernier

 

Pour en savoir plus
(1) Quelle chimie dans le sport ? épisode 1 : le métabolisme énergétique aérobie (video), R. Blareau, Blablareau au labo / Mediachimie
(2) Quelle chimie dans le sport  ? épisode 2 : les métabolismes énergétiques anaérobies (vidéo), R. Blareau, Blablareau au labo / Mediachimie
(3) Sport et cerveau, C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, in La chimie dans le sport, collection Chimie et... Junior, EDP Sciences, Fondation de la Maison de la Chimie (2014), isbn : 978-2-7598-1238-7
(4) La fabrique des champions, C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, in La chimie dans le sport, collection Chimie et... Junior, EDP Sciences, Fondation de la Maison de la Chimie (2014), isbn : 978-2-7598-1238-7
(5) Effets de l’exercice physique et de l’entrainement sur la neurochimie cérébrale : effets sur la performance et la santé mentale Ch.-Y. Guezennec Colloque La chimie et le sport, Fondation de la Maison de la chimie (2010)
(6) Chimie et pluie des records aux jeux de Tokyo, J.-Cl. Bernier, éditorial Mediachimie.org
(7) Les matériaux dans le sport, (r)évolutionnaires !, P. Bray, O. Garreau et J.C. Bernier, Fiche Chimie et… en fiches Mediachimie.org

 

Crédit : Image par Vectorportal.com, CC BY

- Éditorial
mediachimie

Comment est fabriqué le ballon de rugby ?

La Coupe du monde de rugby en France suscite en cet automne un engouement très britannique mais aussi très international avec ces vingt équipes venues du monde entier. On connait moins le rugby que le football avec ses
...

La Coupe du monde de rugby en France suscite en cet automne un engouement très britannique mais aussi très international avec ces vingt équipes venues du monde entier. On connait moins le rugby que le football avec ses règles où se mélangent les passes en arrière et les mêlées organisées et où 30 athlètes affamés se disputent la possession d’un curieux ballon ovale.

En 2023 le ballon officiel de match « INNOVO » du fabricant du Sussex Gilbert n’a plus grand-chose à voir avec le ballon originel que prit à la main William Webb Ellis vers 1823 qui créa ainsi ce nouveau jeu. Il est probable que ce fut un ballon de football plutôt rond qu’ovale qui fut d’abord fabriqué par un cordonnier William Gilbert de la ville de Rugby.

C’est donc à lui qu’on attribue l’invention du ballon de rugby fait au départ de vessies de porc fraiches recouvertes de quatre panneaux de cuir. C’est à la demande des étudiants qu’il fait évoluer leurs formes avec des ballons de plus en plus ovales, plus faciles à attraper, à tenir en courant, roulant plus mal et sortant moins du terrain. De 1850 à 1880 la petite entreprise fabrique plusieurs milliers de ballons par an.

Une première modification est introduite par Richard Lindon qui invente une vessie en caoutchouc (1) qui se gonfle avec une pompe à air et évite de gonfler à la bouche les vessies de porc qui ont parfois contaminé les ouvriers chargés du gonflage. Progressivement les dimensions du ballon se normalisent autour de 30 cm de long et de 60 cm de circonférence du petit périmètre. Si la vessie reste en caoutchouc souple le ballon en cuir est lisse et donc glissant ; lorsqu’il pleut le cuir absorbe l’eau en augmentant son poids et se déforme plus facilement ce qui n’arrange pas le jeu au pied et complique la tâche des tireurs qui transforment les essais par tirs au but.

C’est dans les années 1990 que le ballon « synthétique » va s’imposer : le cuir va être remplacé par du caoutchouc plus dur, du polychlorure de vinyle (PVC) (2) ou du polyuréthane (PU) (3). La vessie en latex est de plus en plus substituée par un caoutchouc butyl (4) et à une pression de 9,5 PSI (i) elle se dégonfle moins.

Les nouvelles compétitions, Tournoi des Nations, Coupes d’Europe et Coupes du monde, vont voir une course à l’innovation. La petite entreprise Gilbert devenue grande reste encore une marque de référence devant Adidas et Summit. C’est elle qui est en 2023 la marque officielle de la Coupe du monde en France avec le ballon « INNOVO » qui contient une vessie en copolymère butyl (ii) protégée par 4 plis de polycoton et caoutchouc et une double valve brevetée « truflight » insérée dans une couture des 4 panneaux de polyuréthane sur lesquels sont moulés des « crips », picots en forme d’étoiles de hauteurs millimétriques différentes du centre vers les extrémités permettant une meilleure dispersion de l’eau, une bonne prise en main et un aérodynamisme amélioré. Dissimulées dans les coutures, faites à la main, la double valve et son contrepoids contribuent à un équilibre parfait. En 2023 cette double valve munie de capteurs donne naissance avec le partenaire de Gilbert Sportable Technologies à un « ballon intelligent » (5). Les entraineurs ou les équipes peuvent intégrer des ballons connectés et afficher sur écran d’ordinateur les statistiques du match, en temps réel. La vitesse du ballon, sa rotation, la distance de la passe, la précision du coup de pied… toutes données exploitables, ne serait-ce que pour préparer la prochaine Coupe du monde en Australie en 2027.

Plus simple et terre à terre pour les enfants et l’initiation à ce beau sport, préférez le ballon en mousse de polyester qui est aussi amusant.

Jean-Claude Bernier
septembre 2023

 

(i) Le PSI ou Pound-force/square inch est l'unité anglosaxone de mesure de pression. 1 PSI = 6,89476 kPa = 0,0689476 Bar donc 9,5 PSI = 0,655 bar.
(ii) La caoutchouc butyl est un copolymère d’isobutylène et d’isoprène
 

Pour en savoir plus
(1) Comment fabriquer des pneus à partir d’un arbre ? La vulcanisation,  Jean-Claude Bernier (fiche Une réaction en un clin d'oeil)
(2) PVC voir Produit du jour de la société chimique de France
(3) Chimie et pluie de records aux jeux olympiques de Tokyo, Jean-Claude Bernier (éditorial) ; PU voir Produit du jour de la société chimique de France
(4) Le caoutchouc synthétique BUP
(5) Shootez, vous êtes connectés, Jean-Claude Bernier (editorial)

 

Crédit illustration : Erwan Harzic- Travail personnel / Wikimedia Commons (licence CC BY-SA 4.0)

- Éditorial
mediachimie

Quel avenir pour l’énergie solaire ?

Alors que l’Agence internationale de l’énergie note qu’en 2022 les énergies éoliennes et solaires ont dépassé les 11% de l’électricité sur le plan mondial, une conférence de Daniel Lincot au Collège de France et un
...

Alors que l’Agence internationale de l’énergie note qu’en 2022 les énergies éoliennes et solaires ont dépassé les 11% de l’électricité sur le plan mondial, une conférence de Daniel Lincot au Collège de France et un rapport de l’Académie de technologie sur le photovoltaïque doivent attirer notre attention (1).

Les panneaux solaires

Pour rappel, l’énergie solaire via un panneau photovoltaïque s’appuie sur le fait que l’absorption de photons par un matériau semi-conducteur peut générer un courant électrique (i).

Parmi ces matériaux, le silicium est particulièrement bien placé car son « gap » correspond en énergie à celle du rayonnement solaire (2). Il reste à capturer les électrons excités pour en faire un courant électrique, avec un collecteur. Depuis 1955 et les premières cellules basées sur des jonctions P/N (ii) simples avec 6% de rendement on a d’abord amélioré le dopage avec des éléments comme le bore ou le phosphore. L’adjonction de grille pour drainer les électrons, la passivation de la surface et sa texturation pour réduire la réflexion de la lumière ont permis de monter le rendement entre 15 et 20%. L’innovation des hétéro-jonctions avec des dépôts de couches minces sur le silicium cristallin ont encore amélioré le rendement à 26%. Pour aller plus loin on pense à mieux absorber les photons dans l’ultra-violet ou ceux qui ont une grande longueur d’onde : on superpose alors à la cellule silicium d’autres cellules qui ont ces propriétés d’absorption, ainsi les cellules dites « tandem » peuvent atteindre 30 à 40% de rendement (3). La recherche est toujours très active en ce domaine avec les nouvelles pérovskites et les cellules organiques.

Pour l’instant face à la concurrence du silicium, la filière couche mince CIGS (iii) ou CdTe n’a pas encore réussi à s’imposer et ne dépasse pas 5% de la production. Cependant en France Solar Cloth produit des panneaux souples légers et performants puisque les modules en couche mince CIGS atteignent un rendement de 17% pouvant recouvrir les toits trop fragiles ou avoir des applications dans les tentes ou serres photovoltaïques (4).

Le silicium photovoltaïque

Pour fabriquer des panneaux photovoltaïques la chimie des matériaux est complexe et énergivore (5). On peut distinguer six étapes.

  1. Il faut réduire le sable (silice) par le carbone selon SiO2 + C = Si + CO2. Pour cela on utilise du coke à haute température, 1500 – 2000°C dans un four à arc.
  2. Le silicium est fondu à 1500 °C et par balayage de gaz on élimine la calcium et l’aluminium initialement présents dans le sable, pour obtenir le silicium métallurgique pur à 98%.
  3. Par attaque à l’acide chlorhydrique, HCl, on obtient le composé de formule SiHCl3 qui, une fois purifié par distillation à 300°C, est décomposé par le dihydrogène, H2, pour obtenir le silicium suivant la réaction SiHCl3 + H2 = Si + 3 HCl. Fondu sous vide on obtient du silicium pur à « cinq neuf » soit 99,999%
  4. Les lingots sont alors purifiés par zone fondue pour obtenir du « 7 neuf » (99,99999 %), par le procédé Czochralski). On amorce le bain fondu avec un germe et on étire un cylindre monocristallin (6).
  5. On découpe ensuite les « wafers (iv) » qui ont 0,2 mm d’épaisseur sur 20 cm et on opère les opérations de dopage dans des fours à atmosphère contrôlée.
  6. Viennent les opérations de surfaçage puis de montage avec les circuits de cuivre et insertion dans les cadres en aluminium et les protections en verre.

Toutes ces opérations exigent pas mal d’énergie, des réactifs chimiques, acide et bases, des quantités d’eau souvent pure de qualité électronique et inévitablement génèrent des effluents qui demandent à être traités.

La situation en France et en Europe

La France dispose de 17 GW de puissance photovoltaïque installée au premier trimestre 2023 et une production de l’ordre de 2,2% de l’électricité nationale. On est en retard sur le tableau de marche (20 GW en 2023 et 35 GW en 2028) ce qui imposerait d’installer au moins 3 GW par an (7).

Le problème est que si en 2022 les exportations de panneaux photovoltaïques (PV) représentaient 7% de l’excédent de la balance commerciale chinoise les importations de ces mêmes panneaux représentaient 2% du déficit commercial en France. Car la production de silicium de la silice aux wafers est à 95% aux mains de la Chine qui a investi des dizaines de milliards de dollars dans cette filière et qui investit encore dans les nouveaux produits hétérojonction et tandem. Le prix du Watt solaire s’est écroulé et le MWh est devenu compétitif dans les pays très ensoleillés, largement en dessous de 60 €. Cette redoutable machine chinoise a laminé l’industrie européenne du silicium. S’il reste un fondeur allemand Wacker et quelques fabricants de wafer notamment en Norvège, l’Europe n’est riche que de projets exigeants des milliards d’investissements pour espérer émerger sur ce marché en 2030. Et le pire c’est que ces modules PV sont fabriqués actuellement avec une énergie qui en Chine s’accompagne d’environ 600 g de CO2/ kWh, souvent issue de centrales thermique à charbon.

Des calculs très précis ont été faits sur les dépenses énergétiques des six stades de fabrication. La dépense énergétique la plus forte est paradoxalement le dernier stade, on n’est pas très loin de 3000 kWh par m² de modules. S’ils sont produits en Chine cela représente près de 1,8 tonnes de CO2 alors que s’ils étaient fabriqués en France cela ne représenterait plus que 180 kg, méritant mieux le label bas carbone. Sachant qu’un panneau PV produit en moyenne 300 kWh/m² par an on voit qu’il faut quelques années de production pour compenser l’énergie dépensée pour sa fabrication.

D’où l’intérêt en France et en Europe pour des solutions moins énergivores telles que les couches minces de CIGS développées par l’IPVF (l’Institut Photovoltaïque d'Île-de-France) à Saclay.

Les recommandations de l’Académie de technologie sont de dire que même si l’Europe est actuellement pieds et mains liés à un seul fournisseur, la Chine, comme le fut l’Allemagne au gaz russe, la situation est grave mais non catastrophique. Si au niveau européen on s’entend pour produire, du sable au wafer, des cellules de silicium européennes fabriquées avec une énergie plus propre, nous avons une carte à jouer en industrialisant au plus vite les technologies TOPcon (v) et Tandem à base de pérovskites pour avoir un avantage concurrentiel sur le rendement des cellules. Indépendamment, encourager l’industrialisation des panneaux couches minces qui peuvent s’avérer décisifs dans l’évolution du photovoltaïque et redonner une compétitivité européenne dans le PV bas carbone.

Enfin il faut, à l’instar du « Inflation Reduction Act » (IAR) des États-Unis, que l’Europe se donne les moyens d’un investissement colossal et des arrangements fiscaux pour une industrie capable de rivaliser avec les géants américains mais surtout chinois.

Jean-Claude Bernier
Juin 2023


(i) Le comportement électrique des semi-conducteurs peut être expliqué par le modèle de la théorie des bandes d’énergie. Dans ce modèle, les électrons dans l’état fondamental (état stable, non conducteur), sont répartis dans une bande d’énergie appelée bande de valence. Si un apport extérieur d’énergie est apporté au matériau, certains électrons peuvent absorber cette énergie et sauter dans une bande dite de conduction. Le matériau conduit alors le courant. L’écart d’énergie entre ces deux bandes est appelé bande interdite ou « gap ». Il faut donc que l’apport d’énergie extérieure soit supérieur à ce gap.

(ii) Pour en savoir plus sur les jonctions P/N : L’essentiel sur les cellules photovoltaïques sur le site du CEA

(iii) CIGS pour les éléments chimiques cuivre, indium gallium, et sélénium.

(iv) On appelle Wafer une « tranche » ou une plaque très fine de matériau semi-conducteur monocristallin.

(v) « Nous avons choisi la technologie TOPCon pour notre future gigafactory française de production de cellules solaires », L'Usine nouvelle, 23 mai 2022

 

Pour en savoir plus
(1) La solution photovoltaïque, D. Lincot, vidéo CNRS
Énergie solaire photovoltaïque et transition énergétique,  D. Lincot, leçon inaugurale au Collège de France - D. Lincot
Académie des technologies : pour le développement de productions industrielles de panneaux photovoltaïques en France et en Europe sur le site de l'IPVF
(2) La conversion photovoltaïque de l’énergie solaire, D Lincot, Revue du Palais de la découverte n° 344-345 (janvier-février 2007)
(3) Les nouvelles filières photovoltaïques, D. Lincot, vidéo CNRS
(4) Les filières photovoltaïques en couches minces et leurs perspectives d’application à l’habitat, D. Lincot, in La chimie et l’habitat (EDP Sciences, 2011)
(5) L’électronique, c’est de la chimie, P. Bray, O. Garreau et J.C. Bernier, fiche Chimie et en fiches… cycle 4, Mediachimie.org
(6) De la chimie au radar du rafale, Bertrand Demotes-Mainard, Colloque chimie et technologie de l’information (2013)
(7) La R&D au service de la décarbonation de l’industrie, J. Ph. Laurent, Colloque Chimie et énergie nouvelles (2021)
 

Crédit illustration : andreas160578/ Pixabay

- Éditorial
mediachimie

Contre la sécheresse faut-il ensemencer les nuages ?

Dès avril les média alertent les Français sur le faible niveau des nappes phréatiques et anticipent sur une crise de l’eau qui peut se produire en 2023 si la sécheresse due au manque de pluie s’installe à nouveau comme en
...

Dès avril les média alertent les Français sur le faible niveau des nappes phréatiques et anticipent sur une crise de l’eau qui peut se produire en 2023 si la sécheresse due au manque de pluie s’installe à nouveau comme en 2022. L’an passé, 93 départements avaient pris des mesures de restriction d’usage de l’eau. En ce printemps, quelques communes font face à l’asséchement de leur réseau de distribution d’eau potable, d’autres mettent fin aux projets de nouveaux lotissements qui risqueraient de n’être pas alimentés. Les incidents violents dans les Deux-Sèvres entre les opposants aux réserves d’eau « les bassines » pour l’irrigation agricole et les forces de l’ordre montrent que les variations de la météo (1) peuvent enflammer nos concitoyens.

Comment faire pleuvoir ?

Et si nous nous intéressions aux nuages, sources d’eau, et pluies qui nous ont cruellement manquées en 2022. Les nuages sont composés d’une multitude de gouttelettes d’eau en surfusion qui ne demandent qu’à se transformer en glace, qui, en perdant de l’altitude, engendrent la pluie. Parlons un peu de ce phénomène physique qu’est la surfusion. En haute altitude, à des températures en dessous de zéro pour un liquide pur comme l’eau, sans impuretés, l’énergie libérée par la chaleur latente de solidification (2) ne compense pas l’énergie nécessaire pour créer l’interface solide–liquide. Cet état méta stable est perturbé par des germes comme des poussières, des aérosols, ou un abaissement brutal de la température, causes qui permettent à des micro-cristaux de glace (3) de se former et de croître en capturant l’eau des gouttelettes voisines ou en agglutinant d’autres cristaux.

Pour favoriser ces phénomènes, il y a deux types d’ensemencements ; le premier pour éviter la grêle on disperse de grandes quantités de particules d’iodure d’argent (AgI) qui est insoluble dans l’eau mais qui a une structure cristalline proche de celle de la glace. Ces milliards de petites particules vont multiplier les noyaux de croissance de cristaux de glace, empêcher qu’ils grossissent et favoriser leur fonte. Le second est d’ensemencer avec des sels solubles dans l’eau comme le chlorure de sodium, ils vont alors dissoudre la glace formée (4) et transformer les cristaux ou grêlons en gouttes de pluie. Il y a une troisième variante celle où est déversée de la glace sèche (de la neige carbonique) ou même de l’azote liquide, l’abaissement brutal de la température va former une myriade de cristaux de petite taille qui vont fondre rapidement en pluie dans les couches atmosphériques plus chaudes.

Une technique généralisée

Historiquement l’ensemencement des nuages pour provoquer la pluie a été utilisé en 1946 dans la région de New-York où sévissait une sécheresse durable. Elle s’est ensuite généralisée dans plusieurs pays du monde. En France c’est l’Anelfa (Association Nationale d’Études et de Lutte contre les Fléaux Atmosphériques) qui dès 1951 a mis en étude cette pratique en liaison avec des universités, notamment dans les régions vinicoles sujettes aux orages de grêles. Elle a mis au point un générateur de noyaux de congélation. À partir du sol les nuages vont pomper par courant ascendant l’humidité et les milliards de particules d’iodures d’argent dispersés à partir de quelques grammes d’AgI. Pour être efficace il faut intervenir le plus vite possible sur le nuage orageux, car lorsque la grêle s’est déclenchée on ne peut la stopper. D’autres moyens sont utilisés avec des mortiers qui lancent des fusées dispersant l’iodure dans le nuage ou des ballons qui supportent la charge d’iodure et commandés à distance lorsque le ballon est au-dessus du nuage. De nombreux pays ont recourt à ces techniques ; plus d’une dizaine de pays africains devant faire face aux pénuries d’eau les utilisent pour faire pleuvoir. Aux Émirats arabes unis de grosses quantités d’iodure semées par avion ont même réussi à faire tomber de la neige. La Chine a un ambitieux programme d’ici 2025 sur la moitié de son territoire soit plus de 5 millions de km2 de « géo-ingénierie » qui n’est pas sans inquiéter ses voisins. Car il n’y a pas de murs aux frontières entre les pays. On a ainsi vu l’Iran protester contre les programmes d’ensemencement d’Israël et des Émirats, les accusant de voler les nuages et donc la pluie à leurs profits. En réalité s’il est possible de faire pleuvoir un nuage plus vite que prévu, sous un ciel clair bien bleu il est impossible de créer un nuage qui va précipiter.

Une efficacité discutée

La communauté scientifique reste très mesurée sur l’efficacité des ensemencements. L’Anelfa, qui a un très bon réseau en France soutenue par les régions, a mis en place des « grêlomètres » et affirme qu’il y a une réelle diminution de 50% de l’intensité de la grêle lorsque les générateurs sont mis en action suffisamment tôt. Les experts de l’Organisation Météorologique Mondiale (OMM) restent prudents sur la modification du temps (5) et soulignent que même s’il reste difficile de faire pleuvoir là où on veut, la recherche et les techniques se sont intensifiées et ont bien progressé avec le changement climatique. Reste un dernier point polémique la toxicité possible de l’iodure d’argent dans l’environnement qui sous les rayons UV du soleil se transforme en argent et en dérivés de l’iode. D’après l’Anelfa les quantités libérées sont 1000 fois inférieures au seuil de toxicité.

Un nouveau plan sur l’eau en France

Le président E. Macron a présenté le 30 mars un certain nombre de mesures pour planifier la gestion de l’eau en France ; bien sûr l’ensemencement des nuages n’en fait pas partie, mais quantité d’objectifs concernant l’anti-gaspi et la sobriété sont sous-tendus de budgets chiffrés. Quoique l’opinion publique puisse penser, la France n’est pas trop mal dotée (6) avec une moyenne de précipitations de 935 mm/an (avec bien sûr de grandes disparités régionales) c’est environ 500 milliards de m3 d’eau qui nous tombent dessus. Les prélèvements sont de l’ordre de 32 milliards dont une grande partie est restituée, la consommation en eau potable représente une faible partie de l’eau consommée, sa production est de l’ordre de 5 mrds m3. Or on sait que le réseau de distribution de 850 000 km qui commence à dater devrait être mieux entretenu car plus de 20% du débit est perdu et gaspillé par des fuites permanentes ou occasionnelles soit presque 1 mrd m3, on est évidemment loin des quelques millions de m3 obtenus par ensemencement et l’urgence est bien de mettre tout en œuvre pour réparer et moderniser le réseau d’ici 2030.

Jean-Claude Bernier
avril 2023


Pour en savoir plus
(1) Fluctuations climatiques extrêmes et sociétés au cours du dernier millénaire, E. Garnier, colloque Chimie et changement climatique (novembre 2015)
(2) Changement d’état, vidéo Palais de la Découverte
(3) Comment est la neige cet hiver ?, Question du mois, site Mediachimie.org
(4) Pourquoi met-on du sel sur les routes lorsqu’il gèle ?, Question du mois, site Mediachimie.org
(5) Faut-il fertiliser l’océan pour contrôler le climat ?, S. Blain, Colloque La chimie et la mer (2009)
(6) L’eau, une ressource indispensable pour la ville, A. Charles, A. Harari, et J. C. Bernier, fiche Chimie et… en fiches, Mediachimie.org

 

Crédit illustration : Łukasz Cwojdziński / Pixabay

- Éditorial
mediachimie

Un Salon de l’Agriculture sous tension

En cette fin de février et début de mars se tient à Paris le Salon de l’Agriculture qui après près de trois ans de pandémie renoue avec une tradition bien établie et avec probablement autant sinon plus de visiteurs
...

En cette fin de février et début de mars se tient à Paris le Salon de l’Agriculture qui après près de trois ans de pandémie renoue avec une tradition bien établie et avec probablement autant sinon plus de visiteurs qu’en 2019. Cette fête du monde agricole ne doit cependant pas cacher les fortes préoccupations des agriculteurs sur la pérennisation de leur métier et de leurs exploitations (1).

Comme nombre de PME ils sont frappés par le coût de l’énergie, gaz, électricité et fuel ; s’y ajoute l’augmentation du prix des engrais et intrants, les diverses réglementations concernant les phytosanitaires et enfin la sécheresse qui semble s’installer durablement, indice du changement climatique.

1. L’énergie

Comme nombre d’entreprises qui ne bénéficient pas du bouclier tarifaire les agriculteurs doivent faire face à une augmentation plus ou moins forte des tarifs de l’électricité, du gaz et du fuel pour les engins agricoles. Ils peuvent cependant bénéficier de subventions du ministère et de l’ADEME dans le cadre de l’accélération des énergies renouvelables. Pour les installations de biométhane (2), on sait qu’il est possible par fermentation bactérienne anaérobie de traiter les déchets végétaux et déjections animales par hydrolyse acidogénèse puis acétogénèse donnant un acide acétique qui se transforme en gaz CH4 + CO2 en laissant un digestat riche en azote et ammoniaque. Il y a maintenant en France 1600 unités dont 966 produisant de l’électricité et 442 qui après purification injectent le méthane dans le réseau. GDF rachète le biométhane entre 95 € et 45 € le m3 et EDF 140 à 190 € le MWh ce qui peut faire un complément de revenu agricole.

Se met en place aussi l’agrivoltaïque, qui consiste à mettre au-dessus d’une culture habituelle des nouveaux panneaux solaires semi transparents qui fournissent de l’électricité en fonction de l’ensoleillement qui profite aussi aux cultures sous-jacentes. Les nouveaux panneaux (3) avec des rendements de l’ordre de 20% vont bientôt être concurrencés par les panneaux PV tandems qui mêlent silicium et pérovskites avec un rendement amélioré. L’IPV de Saclay que nous connaissons bien s’apprête à lancer une fabrication industrielle de tels panneaux en Alsace avec VOLTEC Solar.

2. Les intrants

Après la crise du gaz en Europe dont les prix avaient atteint des sommets en mars 2022, la pénurie d’ammoniac (4) avait aussi atteint les engrais azotés qui avaient dépassés les 1000 €/t en avril 2022 semant la panique notamment dans les exploitations familiales. Depuis, le cours du gaz est retombé à un niveau de l’ordre de 50 € le MWh, l’ammonitrate est aussi retombé à environ 500 €/t et l’urée à 400 €/t, niveaux qui cependant sont le double de ceux de 2020. Cela entraine une « sobriété » dans l’épandage de ces engrais qui, sans aller vers une agriculture « bio » qui représente en France environ 7 à 10 % des exploitations, va tout de même modifier le rendement des sols et probablement une baisse de revenus.

3. Les insecticides et l’Europe

Sans revenir sur « le glyphosate » interdit en Europe mais toujours pas sur d’autres continents, en janvier une directive de Bruxelles met fin aux dérogations nationales sur les néonicotinoïdes (5) enrobés autour de la graine de betterave. La France avait interdit dès 2018 plusieurs insecticides qui agissent sur le système nerveux des insectes dont l’imidaclopride et l’acétamipride. Huit États européens avaient profité de cette dérogation pour autoriser leurs agriculteurs à utiliser les semences déjà enrobées pour la campagne betteravière 2023. En France le ministre de l’Agriculture a l’interprétation la plus stricte, celle où le directive de Bruxelles s’applique immédiatement. Les betteraviers français protestent devant cette concurrence qui s’installe entre productions européennes en rappelant qu’en 2020 leur récolte avait été amputée de 30% suite aux attaques de pucerons ravageurs. Ils sont d’autant plus remontés qu’en Allemagne l’acétamipride est autorisé en pulvérisations.

   

Même si on voit dans la structure des deux molécules une assez forte différence dans la chaine azotée (6) il est probable que leur mode d’action sur les insectes ravageurs est de même type. Une fois de plus on constate que le principe de précaution vis-à-vis de l’environnement et de la biodiversité se heurte à des considérations de concurrence entre États.

4. L’eau recyclée

L’impact du changement climatique se fait ressentir, l’augmentation des températures et la baisse des précipitations se traduisent par une baisse des rendements et de la qualité des produits agricoles (7). Dès lors, la réutilisation des eaux usées (REUT) est une alternative qui devrait permettre la pérennisation de l’agriculture et la préservation des ressources en eau. Déjà pratiquée en Italie et en Espagne (8 et 14% respectivement), peu développée en France où sur le gisement de 8,4 Mrds de m3 seuls 8 à 10 millions de m3 sont utilisés chaque année, alors que le gisement exploitable est 1,6 Mrds.

Et pourtant ces eaux usées présentent de multiples avantages pour l’agriculture – elles pallient un problème temporaire d’accès à l’eau d’irrigation – leur volume n’est pas soumis aux arrêtés préfectoraux de restriction d’usage de l’eau - si aucun traitement de dénitrification et de déphosphorisation n’est réalisé par la station d’épuration leurs teneurs en éléments fertilisants organiques n’est pas négligeable (8).

Bien sûr elles doivent obéir à une réglementation stricte et à des prescriptions sanitaires pour ne pas mettre en danger la santé publique. Suivant leurs qualités elles sont classées en quatre classes en fonction de l’usage :

  • pour les cultures maraîchères, fruitières et légumières non transformées par un traitement thermique - qualité A
  • pour les cultures maraichères, fruitières et légumières transformées par un traitement thermique – qualité A ou B
  • pour les cultures céréalières et fourragères – qualité A ou B ou C*

 

Selon l’arrêté du 18 juillet 2015 relatif aux systèmes d’assainissement collectifs et non collectifs (legifrance.gouv.fr),
figure provenant du site Bonnes pratiques pour l’eau du Grand Sud-Ouest

Il ne faut pas se cacher que la procédure pour en arriver à l’irrigation est complexe, il faut avoir accès aux eaux usées par une collectivité ou une société locale d’eau et d’assainissement. Il faut ensuite confier le stockage et la distribution à une société prestataire agrée et financer ces opérations par le groupe d’agriculteurs concernés. Si dans les régions littorales le REUT est plus adapté car il vise à la réutilisation de l’eau douce avant son rejet à la mer dans les régions continentales il pose plus de problèmes. D’autant que les prescriptions européennes en matière de classement semblent se durcir en 2023. 

Jean-Claude Bernier
février 2023

Pour en savoir plus
(1) Série chimie et agriculture durable pour tous (vidéos), Mediachimie.org
(2) Les déchets valent de l’or ! (fiche Chimie et... en fiches, Mediachimie.org)
(3) Les nouvelles filières photovoltaïques (vidéo, CNRS)
(4) Comment fabriquer des engrais avec de l’air : la synthèse de l’ammoniac (série Une réaction en un clin d'oeil, Mediachimie.org)
(5) Chimie de synthèse et agriculture durable peuvent-elles faire bon ménage ? (fiche Chimie et... en fiches lycée, Mediachimie.org)
(6) Les chimistes dans : L’industrie des phytosanitaires (série Les Chimistes dans, Mediachimie.org)
(7) H2O, la molécule vedette de l’été (éditorial, Mediachimie.org)
(8) Fiche orientation : secteur du traitement de l’eau (Mediachimie.org)
 

 

Crédit illustration : Les Haines, licence CC BY 2.0, PxHere

- Éditorial
mediachimie

La chimie vous aide à économiser l’énergie

En cet hiver 2023 les prix de l’énergie jouent avec nos nerfs, plus de 15% pour l’électricité pour les particuliers, 400% pour certaines industries ou PME. Le prix du gaz durablement élevé autour de 140 €/MWh, sans
...

En cet hiver 2023 les prix de l’énergie jouent avec nos nerfs, plus de 15% pour l’électricité pour les particuliers, 400% pour certaines industries ou PME. Le prix du gaz durablement élevé autour de 140 €/MWh, sans oublier l’essence et le gasoil qui ne bénéficient plus des remises de 2022.

Les entreprises et industries adoptent des solutions radicales afin de diminuer leurs consommations, baisse de production, fermeture partielle, baisse de la température et de l’éclairage dans les halls ou les bureaux, etc. Mais que peuvent faire les particuliers chez eux dans la vie de tous les jours ?

L’isolation pour une meilleure efficacité thermique des bâtiments

Comment empêcher les calories de courir d’une source chaude vers une source froide ?

Il faut interposer une barrière avec des matériaux qui ont une faible conduction thermique (1).

Les maisons sont des passoires thermiques, les calories sont perdues par le toit (30%), les murs (15%), les fenêtres (15%) et la ventilation (20%).

Plutôt que construire avec de bêtes parpaing en béton, on peut :

  • utiliser des briques céramiques avec des alvéoles et des ponts thermiques labyrinthes ;
  • isoler les combles et doubler les murs avec des isolants de fibres de verre ou de laines de roches obtenus par filages à 1500°C ;
  • utiliser des plaques de plâtres doublées de polystyrène expansé ou de mousses phénoliques pour les murs intérieurs, des polyuréthanes expansés pour l’isolation des sols et plafonds ou de nouveaux isolants tels que les aérogels de silice obtenus par élimination de l’eau des polymères Si-O-Si-O-SiOH-
  • utiliser de nouveaux venus avec des nanoparticules comportant des pores inférieures au libre parcours moyen des molécules de l’air O2 et N2.

Pour les fenêtres : pourquoi chauffer le jardin ? (2)

Utiliser les vitrages super isolants qui entre deux lames de verres emprisonnent de l’argon deux fois moins conducteur que l’air et où sur l’une des faces intérieures du verre sont déposés de micro-cristaux métalliques qui réfléchissent le rayonnement infrarouge vers l’intérieur de la maison.

La moyenne des constructions et maisons a une dépense énergétique annuelle de l’ordre de 250 kWh/m2 (classement efficacité énergétique D). Les nouvelles constructions avec le règlement thermique 2020 doivent obtenir le label A (moins de 50 kWh/m2 ou 0 pour la maison passive) (3). Dans la nouvelle réglementation du ministère de l’Écologie les logements avec la classification F et G (300 à 450 kWh/m2) ne pourront plus être loués après 2025, ce qui rien qu’en région Île-de-France représente plusieurs centaines de milliers de logements.

La rénovation du parc existant est essentielle car la consommation énergétique du tertiaire et résidentiel représente plus de 48% de l’énergie totale en France. Pour les propriétaires et bailleurs sociaux cela représente parfois un vrai casse-tête. Dans Paris les immeubles haussmanniens ne peuvent être rénovés que par l’intérieur, la mise en place d’isolants thermiques diminue la surface des appartements de 2 à 5% ce qui au prix au m² à Paris représente des fortunes. Dans les immeubles collectifs la décision par assemblée des copropriétaires n’est pas facile et les travaux prennent plusieurs années de retard. Enfin nombre de propriétaires se plaignent de faibles résultats sur leur consommation après travaux, nombre d’entreprises n’étant pas vraiment qualifiées ou formées.

Et la chaleur latente ?

La physicochimie et la thermodynamique vous permettent de faire des économies, vous pouvez utiliser la chaleur de condensation lorsque qu’un gaz devient liquide, ou de solidification quand un liquide devient solide (4).

Prenons l’exemple de l’eau : pour élever la température de 0° à 100°C, il faut dépenser 418 kJ, alors que la chaleur latente de condensation est de 2250 kJ à 100°C soit 5 fois plus. Pour en profiter il faut essayer de récupérer la vapeur d’eau pour la condenser. C’est ce qui arrive dans les chaudières à gaz à condensation, la vapeur d’eau présente dans les fumées se condense pour réchauffer le circuit d’eau chaude et booste le rendement de la chaudière à 95%.

Plus simple encore, il vaut mieux couvrir avec un couvercle la casserole où vous cuisinez, les vapeurs se condensent sur le couvercle et vous récupérez les calories de la chaleur latente ce qui permet d’économiser de 15 à 20% d’énergie.

C’est aussi le principe du chauffage par pompe à chaleur comme son nom l’indique on va chercher les calories à l’extérieur dans l’air ou le sol avec un gaz généralement fluoré (les HCFC ou hydrochlorofluorocarbone qui ont remplacé les CFC) (5) et on le condense sous pression dans un échangeur qui chauffe la maison grâce à sa chaleur de condensation.

Si vous êtes riches !, vous pouvez aussi doubler vos murs par des cloisons d’un type placoplâtre particulier qui comportent des alvéoles avec des cires ou paraffines dont le point de fusion est compris entre 20°c et 26°C. Lorsque le mur est ensoleillé le jour, les paraffines fondent et la nuit lors du refroidissement les paraffines se solidifient en redonnant à la paroi la chaleur latente de solidification.

Dans la vie de tous les jours

Pour bouger, pour travailler, pour respirer, nous avons besoin d’énergie, dans notre corps la réserve est fournie par l’ATP, l’adénosine triphosphate, qui est le relais moléculaire pour toutes nos cellules. Par la nourriture nous consommons environ 2000 kcal/24 h contenues surtout dans les glucides et lipides (6). Leur conversion en ATP a un rendement d’environ 50%, l’autre moitié sert à dégager de la chaleur pour maintenir notre corps à 37°C. Pour absorber cette nourriture il faut la rendre agréable et souvent la cuire ou la réchauffer. Pour économiser l’énergie, utiliser à cet effet l’électromagnétisme avec les plaques à induction (7) : le courant haute fréquence généré à 25 kHz par des bobines à induction en cuivre placées sous la plaque vitrocéramique, entraîne des courants de Foucault dans le métal de votre récipient qui se renversent 25 000 fois par seconde et chauffent par effet Joule. Le gros avantage de l’induction est que l’on chauffe seulement le récipient et pas les bruleurs ou la plaque chauffante, l’économie d’énergie se chiffre à 30%.

De même avec le four à micro-ondes, on fait vibrer les molécules d’eau à environ 2450 MHz. Les dipôles constitués par les molécules d’eau (H2O) entrent en résonnance et le liquide chauffe très vite. Ici encore on ne chauffe que le contenu et pas le contenant d’où une économie d’énergie de 20 à 40% par rapport à un four classique.

Mais pour maintenir le bien être en hiver, en plus de l’isolation de nos maisons, des chauffages plus ou moins sophistiqués pour maintenir 19°C, nous avons aussi toute une panoplie de vêtements avec de nouvelles fibres agréables en hiver : les microfibres en polyéthylène recyclé, des pulls polaires à base de bouteilles en polyester (PET) recyclés, les fibres acryliques creuses légères donnant une bonne isolation thermique « Froid moi ? Jamais, j’ai mon…. !!!». Sans aller aux textiles imper-respirants et même thermo-régulants, les nouvelles fibres nous offrent un large panel qui nous permet de lutter contre une éventuelle panne d’énergie.

Jean-Claude Bernier
janvier 2023

 

Pour en savoir plus
(1) Quelles solutions pour améliorer la performance énergétique de l’habitat ?, S. Steydli, Chimie et... en fiches (lycée), Mediachimie.org
(2) La discrète révolution dans la performance énergétique des bâtiments, F. Michel, colloque Chimie et grandes villes, 9 novembre 2016 (Maison de la Chimie)
(3) Isolation dans l’habitat : la chimie pour ne pas gaspiller de calories, J.-C. Bernier, colloque La chimie et l’habitat (2011)
(4) Changements d’état, vidéo Palais de la découverte / SFRS / Université Pierre et Marie Curie 1997
(5) Chimie, atmosphère, santé et climat, une histoire partagée, E. Durocher, N. Baffier et J.-C. Bernier, Chimie et... en fiches (collège), Mediachimie.org
(6) La chimie dans la vie quotidienne : les apports de l’alimentation C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, in La chimie dans la vie quotdienne, collection Chimie et... Junior, EDP Sciences, Fondation de la Maison de la Chimie (2018)
(7) Les objets du quotidien : dans la maison et la cuisine C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, in La chimie dans la vie quotdienne, collection Chimie et... Junior, EDP Sciences, Fondation de la Maison de la Chimie (2018)
 

Crédit illustration : sumit kumar/Pixabay

- Éditorial
mediachimie

Les jeunes et la science

La parution à la même période de l’interview d’Alain Aspect prix Nobel de physique 2022 (1) et de l’enquête sur la désinformation scientifique des jeunes à l’heure des réseaux sociaux (2) m’interpelle sur notre rôle, nous
...

La parution à la même période de l’interview d’Alain Aspect prix Nobel de physique 2022 (1) et de l’enquête sur la désinformation scientifique des jeunes à l’heure des réseaux sociaux (2) m’interpelle sur notre rôle, nous chercheurs et enseignants en science.

Le premier message d’Alain Aspect est destiné aux jeunes, montrant que l’on ne va pas régler les problèmes de la planète et de la société contre la science. Au contraire, l’amélioration des modèles complexes insuffisants pour le climat et la résolution des pandémies est le résultat d’encore plus de recherches en informatique et en biochimie. Il rappelle aussi combien à l’école et au lycée il a été marqué par les expériences simples des leçons de choses et par ses enseignants qui lui ont transmis les méthodes de base qui lui ont bien servi jusqu’à maintenant.

Alain Aspect insiste aussi sur la nécessité de donner des moyens financiers et humains à la recherche exploratoire sans laquelle par exemple son sujet l’intrication quantique n’aurait pu déboucher sur ce qu’on appelle « la seconde révolution quantique ». Pour lui un meilleur financement des start-ups et surtout une diminution des délais administratifs des financements parait aussi essentiel. Car le plan quantique peut déboucher sur d’importantes applications comme les ordinateurs quantiques et la cryptographie quantique susceptibles de développements remarquables. En conclusion il revient sur un message aux jeunes en leur rappelant que la sobriété en énergie du calcul quantique devrait leur parler.

Ce message et ces rappels de l’importance de la science sous tous ses aspects, santé, énergie, climat, pollution, environnement, est d’autant bienvenu qu’il télescope de front l’enquête IFOP sur la désinformation des jeunes (11 à 24 ans) sur la science. Qu’y apprend-on en effet ?

  • Que seuls 33 % perçoivent positivement les bienfaits de la science (55% en 1972) et que 17% en pensent plus de mal que de bien (6% en 72).
  • Qu’ils adhèrent de plus en plus aux vérités alternatives.
  • 27% nient la longue évolution des êtres humains.
  • 32% assurent que les vaccins anti-covid à ARN génèrent des protéines toxiques et des dommages irréversibles.
  • 20% pensent que les Américains ne sont jamais allés sur la lune et 31 % que l’élection américaine a été faussée au détriment de D. Trump.
  • Au total plus des 2/3 croient au moins à l’une de ces contre-vérités scientifiques y compris que la terre est plate (16%).

L’analyse sociologique montre que les populations les plus « désinformées » font partie des plus démunies, que leur religion a une influence mais surtout qu’ils sont très « addicts » aux réseaux sociaux YouTube et surtout TikTok et son moteur de recherche chinois, qu’ils consultent plusieurs fois par jour. On s’aperçoit que cette génération (11-24 ans) s’informe essentiellement sur internet (64%) en délaissant les journaux télévisés (23%) et qu’ils accordent la crédibilité de préférence aux influenceurs qui ont le maximum de « followers ».

Alors comment remonter la pente ? Alain Aspect nous en trace quelques chemins :

  • illustrer des phénomènes physiques et chimiques de base par les professeurs des écoles ;
  • donner les bases de l’esprit critique au sein de l’enseignement au lycée.

La Fondation de la Maison de la Chimie contribue à ces deux chemins. Elle soutient la Fondation de la Main à la Pâte qui met à disposition des enseignants des écoles et du collège, des ressources et des aides variées pour mener à bien des activités de sciences et de technologie, dont la chimie (3).

La Fondation de la Maison de la Chimie a également créé le site Mediachimie.org sur lequel sont disponibles de nombreuses données en chimie, vérifiées et scientifiquement sûres (4). En effet, cela fait maintenant plus de 10 ans qu’une bonne vingtaine d’enseignants et chercheurs bénévoles œuvrent pour mettre à disposition des jeunes, de leurs enseignants et du grand public, des documents, des fiches, des vidéos, des colloques sur la chimie et la science et aussi donner l’occasion de rencontrer ou de voir les témoignages d’hommes et de femmes de science ou de l’industrie leur parler d’expériences, de vécus et de métiers d’avenir. Il faudrait encore plus de sites dévolus à la science, si possible agréables et vivants.

Continuons à apporter notre pierre pour aider nos collègues enseignants du primaire et secondaire au service de l’information scientifique vraie. Ensemble nos efforts conduiront peut-être à de nouveaux prix Nobel pour cette tranche d’âge.

Jean-Claude Bernier et Françoise Brenon

 

Pour en savoir plus :
(1) On ne réglera pas les problèmes de la planète contre la science mais avec elle, interview d’Alain Aspect, Les Echos (13 janvier 2023)
(2) La mésinformation scientifique des jeunes à l’heure des réseaux sociaux Enquête IFOP pour la Fondation Jean Jaurès et la Fondation Reboot (12 janvier 2023)
(3) Partenariat LAMAP-Fondation de la Maison de la chimieSéquences La main à la pâte – Mediachimie, site Mediachimie.org
(4) Site Mediachimie.org, Espace enseignants Mediachimie.org

 

Crédits : image d'illustration, Fox@Pexels , licence

- Éditorial
mediachimie

Plus de gaz… Plus d’engrais ?

La crise européenne sur le gaz naturel (le méthane) et sur l’énergie a ses plus vives répercussions sur l’industrie et notamment sur l’industrie chimique qui est énergivore. En effet, outre les besoins en électricité et
...

La crise européenne sur le gaz naturel (le méthane) et sur l’énergie a ses plus vives répercussions sur l’industrie et notamment sur l’industrie chimique qui est énergivore. En effet, outre les besoins en électricité et en chaleur pour les réactions chimiques industrielles, le gaz n’est pas seulement un carburant énergétique mais aussi une matière première pour des produits essentiels.

Prenons comme exemple la chaine des engrais azotés passant par le dihydrogène, l’ammoniac, l’acide nitrique et enfin les nitrates. En effet depuis la découverte du procédé industriel de synthèse de l’ammoniac dit Haber-Bosch en 1913, les engrais azotés ont permis à l’agriculture de multiplier les rendements agricoles notamment sur le blé et le maïs et aussi d’autres cultures vivrières, par un facteur 5 qui n’a pas été l’un des moindres à contribuer à l’augmentation de la population mondiale après 1920.

La synthèse de l’ammoniac, dont la réaction N2 + 3 H2 = 2 NH3, parait simple, exige hautes pression et température (300 bars ; 500°C), donc consomme de l’énergie électrique pour les compresseurs et de la chaleur pour le réacteur.

Mais il faut aussi préalablement produire le dihydrogène et le diazote ce qui s’accompagne de consommation de méthane et de formation de CO2. En effet le dihydrogène H2 est majoritairement issu de la réaction du méthane sur l’eau à haute température et le diazote N2 est obtenu en éliminant le dioxygène de l’air par combustion du méthane (réaction dont la chaleur est récupérée pour la réaction précédente). Le détail de ces réactions est consultable sur le site Mediachimie (1).

On peut aussi obtenir du dihydrogène par combustion partielle de charbon qui conduit à 1200°C au « syngas » (2) dont on peut séparer l’hydrogène. Ce procédé est notamment utilisé en Chine.

Dans le monde on fabrique près de 100 millions de tonnes de dihydrogène s’accompagnant hélas de l’émission de près de 1 milliard de tonnes de CO2 (3).

La fabrication des engrais azotés nécessite préalablement de transformer une partie de l’ammoniac en acide nitrique puis de faire réagir l’ammoniac avec une solution d’acide nitrique. On obtient du nitrate d’ammonium NH4NO3 pouvant être utilisé en solution ou en granulés (4). Un autre engrais utilisé largement est l’urée CO(NH2)2. On le fabrique industriellement par réaction de l’ammoniac sur CO2 à 180°C et sous pression de 150 bars en 2 étapes :

CO2 + 2 NH3 = NH2COONH4

suivie de NH2COONH4 = CO(NH2)2 + H2O   (5)

La consommation d’engrais dans le monde s’élève à près de 180 millions de tonnes dont environ 120 Mt azotés qui exigent, rien qu’en matière première, 72 Mt de gaz naturel. On estime que rien que la production de 170 Mt d’ammoniac est responsable de 2% des émissions de CO2 mondiales.

Des procédés plus propres ?

C’est alors qu’intervient la recherche de procédés alternatifs « plus propres ». On trouve alors plusieurs couleurs pour NH3 comme pour le dihydrogène (6) :

  • l’ammoniac « gris » par le procédé traditionnel Haber-Bosch issu du méthane ou d’hydrocarbures,
  • l’ammoniac « bleu » avec encore Haber-Bosch mais avec la capture du CO2,
  • l’ammoniac « vert » toujours Haber-Bosch mais avec de l’hydrogène obtenu par électrolyse de l’eau.

Pour l’instant seule une installation en Arabie Saoudite et un projet au Canada sont ou seront capables de fournir et commercialiser de l’ammoniac bleu qui, à cause du transport vers l’Europe, devient un peu gris-bleu !

Les deux plus importants producteurs d’ammoniac européens YARA et BASF penchent vers une solution de décarbonation en utilisant de l’hydrogène produit par des électrolyseurs proches des réacteurs d’ammoniac. Si l’électricité utilisée vient d’éoliennes alors il sera vert, si c’est de l’électricité issue du nucléaire il tendra vers le jaune. En fait techniquement on peut se passer de sources de méthane mais le problème est économique car l’ammoniac « vert » a un prix de revient lié au prix du MWh et est bien plus élevé que le « gris » sauf si le prix du gaz reste anormalement élevé.

La recherche pour des procédés « durables »

Y a-t-il des méthodes « douces » pour obtenir l’ammoniac ? Le principal problème chimique est de casser la molécule de diazote dont la liaison N≡N est particulièrement forte. Plusieurs recherches sont menées pour y parvenir, une équipe américaine a réussi à hydrogéner l’azote de l’air en solution grâce à un complexe hydrocarboné de zirconium. Des chercheurs de Rice University ont réussi par électro catalyse à produire environ 10 g d’ammoniac par heure à partir d’un catalyseur constitué de microcouches 2D de sulfure de molybdène où les atomes de soufre sont partiellement remplacés par du cobalt. Une autre équipe coréenne a simulé la même réaction d’un enzyme nitrogénase que certaines bactéries utilisent pour fabriquer l’ammoniac à partir de l’azote de l’air avec des feuillets de nitrure de Bore BN. C’est la même stratégie qu’a suivi une équipe de Montpellier en s’attaquant aux nitrates dispersés dans l’environnement pour les transformer par électro catalyse en NH3.

Ces réactions ont en commun de ne pas dégager de gaz à effet de serre (CO2) et aussi d’être à l’échelle du laboratoire capable de générer quelques grammes par heure. Il faudra encore des années avant qu’un procédé industriel robuste puisse concurrencer le procédé classique.

L’industrie européenne

Oui l’industrie de l’ammoniac en Europe est vitale. Le cours du gaz qui inférieur à 50 € le MWh en 2020 a dépassé les 300 € au plus fort de la crise en août 2022 pour revenir à des valeurs proches de 100 € pénalise fortement la production d’ammoniac et celle d’engrais azotés. Le nitrate et l’urée ont vu leurs prix multipliés par 3 entre 2021 et 2022 ce qui contraint les agriculteurs à diminuer drastiquement les intrants et même à les supprimer pour les petites exploitations avec des répercussions sur les rendements (7).

Même la chaine des constructeurs automobile est atteinte. Devant le prix du gaz et de l’énergie les chimistes européens ont partiellement arrêtés les unités d’ammoniac et réduit les fabrications d’au moins 30% d’où un manque d’urée pour la dépollution automobile (AdBlue) et industrielle. D’un point de vue plus général, la chimie européenne suivant la déclaration du président de BASF en Allemagne se pose la question de sa survie ou de ses délocalisations si la situation tendue sur l’énergie et le gaz perdure.

Jean-Claude Bernier et Françoise Brénon

 

Pour en savoir plus :
(1) Comment fabriquer des engrais avec de l’air ? La synthèse de l'ammoniac, Françoise Brénon (Réaction en un clin d’œil, Mediachimie.org)
(2) Comment fabriquer de l’essence avec du charbon ? La réaction de Fischer-Tropsch, Jean-Claude Bernier (Réaction en un clin d’œil , Mediachimie.org)
(3) Vision de l’hydrogène pour une énergie décarbonée, conférence et article de Xavier Vigor Colloque Chimie et énergies nouvelles, 10 février 2021
(4) Le nitrate d’ammonium, un engrais dangereux ?, Jean-Claude Bernier (éditorial, Mediachimie.org)
(5) La première synthèse organique, Marika Blondel-Mégrelis (Mediachimie.org)
(6) Qu’est-ce que l’hydrogène « vert » ?, Françoise Brénon (Question du mois, Mediachimie.org)
(7) Agriculture du futur : s’appuyer sur les savoirs et non sur les croyances, Jean-Yves Le Deaut, Colloque Chimie et Agriculture durable, un partenariat en constante évolution scientifique, 10 novembre 2021

 

Crédits : image d'illustration, licence CC0, PxHere

- Éditorial

Des Nobels de chimie pour la chimie click !

L’américain Barry Sharpless (pour la seconde fois après ses travaux sur la catalyse en particulier de réactions stéréospécifiques d’époxydation, couronnés par le Prix Nobel en 2001 !), le danois Morten Meldal et
...

L’américain Barry Sharpless (pour la seconde fois après ses travaux sur la catalyse en particulier de réactions stéréospécifiques d’époxydation, couronnés par le Prix Nobel en 2001 !), le danois Morten Meldal et l’américaine Carolyn Bertozzi ont reçu le Prix Nobel de Chimie le 5 octobre 2022 pour « le développement de la chimie click et de la chimie bio-orthogonale » selon le communiqué de l’Académie Royale de Suède.

Qu’entend-on par chimie click ?

Il s’agit d’un concept simple envisagé par B. Sharpless au début des années 2000 : faire réagir deux molécules pour créer une liaison robuste, comme une ceinture de sécurité fait avec un « clic », pour reprendre la formulation du comité Nobel ; par exemple des réactions de cycloaddition mettant en jeu des molécules dipolaires 1-3 (les charges positives et négatives sont réparties sur trois atomes adjacents).

Parallèlement M. Meldal découvrait par hasard une réaction de cyclisation entre un alcyne (molécule à triple liaison carbone-carbone) avec une molécule dipolaire spécifique l’azoture (molécule à trois atomes d’azote) (i).Il généralisa alors en fonctionnalisant deux molécules l’une avez une extrémité azoture et l’autre avec une extrémité alcyne conduisant à des produits de cycloadditions variés. La réaction nécessite l’emploi d’un catalyseur à base de cuivre. Le rendement est quantitatif si on rigidifie l’alcyne dans une structure cyclique (cyclo-octyne) (ii).

Mais l’élément cuivre n’est pas très compatible avec des réactions dans les milieux biologiques in vivo et c’est là que C. Berzotti proposa en 2003 de fixer sur une molécule polymère de polysaccharide la partie azoture ce qui conduit à la réaction de cyclisation sans nécessité d’employer le catalyseur au cuivre !

Ce sont des réactions quantitatives (100% de rendement), rapides, très sélectives et surtout sans sous-produit ce qui correspond bien aux douze commandements de la chimie verte ! Elles sont souvent réalisées dans l’eau (donc pas de problème de toxicité ici !) et à température ambiante ou jusqu’à 37°C (température des êtres humains bien sûr !).

Qu’entend-on par chimie bio-orthogonale ?

C’est Carolyn Berzotti qui a introduit ce concept en 2003 et il faut comprendre par là qu’il s’agit de l’ensemble des réactions conduisant à la formation ou la rupture de liaisons au sein des milieux biologiques sans interagir (c’est le sens particulier du mot orthogonal ici !) avec les fonctions chimiques présentes dans des milieux complexes : intracellulaire, le sang ou même jusqu’à l’organisme tout entier. C. Bertozzi avec son équipe a généralisé la réaction entre des azotures et des alcynes greffés sur toutes les molécules type sucres d’un organisme vivant tels que les modèles du poisson-zèbre ou la souris en ajoutant sur les molécules des groupes fluorescents permettant de suivre l’évolution réactionnelle.

Cependant peu de réactions synthétiques sont vraiment bio-orthogonales et peuvent être réalisées dans un animal. Les réactions les plus courantes sont justement les cycloadditions entre les azotures et les cyclo-octynes !

La chimie bio-orthogonale peut alors conduire par ces réactions click à i) fonctionnaliser des matériaux tels que les NTC (nanotubes de carbone) ou des polymères pour créer des propriétés adhésives par exemple ii) des nouvelles stratégies thérapeutiques en construisant des médicaments in vivo et en contrôlant leur vitesse de libération dans des organes malades bien ciblés telles que des cellules cancéreuses.

Jean-Pierre Foulon
8 octobre 2022

 

(i) L’azoture a pour formule globale N3- et pour représentation

   (Wikimedia, domain public)

(ii) Cyclo-octyne

    (Wikimedia, domain public)
 

Illustrations et schémas disponibles sur http://nobelprize.org/
© Johan Jarnestad/The Royal Swedish Academy of Sciences

 

 

 

Pour en savoir plus
(1) Deux articles du numéro spécial de chemiobiologie de l’Actualité Chimique n° 468 de décembre 2021 :

(2) Reprogrammation de la réactivité du fer dans le cancer,  R. Rodriguez, article et conférence, colloque Chimie et Nouvelles thérapies du (13 novembre 2019)

 

Illustrations :

Portraits Carolyn R. Bertozzi, Morten Meldal, K. Barry Marshall © Nobel Prize Outreach. Ill. Niklas Elmehed. 

Autres illustrations © Johan Jarnestad/The Royal Swedish Academy of Sciences