- Éditorial
mediachimie

Un physico-chimiste médaille d’or du CNRS

Thomas Ebbesen, professeur à l’université de Strasbourg, vient de se voir décerner la médaille d’or 2019 du CNRS, l’une des plus prestigieuses récompenses scientifiques françaises. C’est au Japon lorsqu’il travaillait
...

Thomas Ebbesen, professeur à l’université de Strasbourg, vient de se voir décerner la médaille d’or 2019 du CNRS, l’une des plus prestigieuses récompenses scientifiques françaises. C’est au Japon lorsqu’il travaillait pour la société NEC en 1988 qu’il mène des recherches sur les nanomatériaux (1) à base carbone : d’abord les fullerènes (2), ces arrangements d’hexagones de carbone C60 ressemblant à de micro-ballons de football, puis il met au point les nouvelles synthèses des nanotubes de carbone (NTC) (3) et commence des travaux sur le graphène (4). Il met en particulier en évidence un état supraconducteur (5) à 33 K pour un C60 dopé au rubinium.

Ce n’est qu’après 1998 qu’il rejoint Strasbourg à l’Institut de science et d’ingénierie supramoléculaire (ISIS) dirigé alors par J.-M. Lehn. Il poursuit alors en France ses recherches commencées au Japon sur l’interaction lumière–matière (6) et « la transmission extraordinaire » ou comment faire passer de la lumière à travers une plaque métallique. « Physicien de l’impossible », il montre la possibilité de transmission de la lumière à travers de nano-trous du métal, dont la dimension est inférieure à la longueur d’onde du rayonnement. Cette découverte donnera lieu à deux publications fondatrices où il montre l’influence des plasmons de surface, ou capture d’une onde par une surface. Ces publications seront citées des milliers de fois.

Après 2012 Thomas Ebbesen se lance sur un « nouveau terrain de jeu », celui de la chimie polaritronique. S’inspirant des travaux théoriques de Serge Haroche et de Claude Cohen-Tanoudji sur les cavités quantiques, il arrive avec son équipe à changer les propriétés des molécules en les enfermant dans une cavité nanométrique entre deux plaques miroirs et en ajustant très précisément l’espace entre ces plaques dans un environnement électromagnétique - il faut réaliser que cet espace doit être de quelques nanomètres c’est-à-dire 1000 fois plus petit que l’épaisseur d’un cheveu. Il y alors échange mécanique de la molécule en résonance avec la cavité et échanges de photons virtuels. Sont alors créés ce qu’on appelle des états hybrides lumière–matière, dits états « polaritoniques ». Le plus surprenant est alors que l’on peut modifier ou exalter une réaction chimique dans ces conditions, des essais ont été réalisés avec des semi-conducteurs organiques, des enzymes, des systèmes biologiques. C’est une « chimie résonante ». Et plus qu’étonnante car Il y a cinq ans, les éditeurs scientifiques étaient incrédules et pensaient qu’il s’agissait de science-fiction. En 2019, avec les résultats qui s’accumulent, sa découverte suscite de nombreuses études théoriques et expérimentales.

Actuellement, Thomas Ebbesen, après avoir dirigé l’ISIS, est directeur de l’Institut d’études avancées de l’université de Strasbourg (USIAS). Il a déjà reçu de nombreux prix prestigieux dont en 2018 le Grand prix de la Fondation de la maison de la chimie pour ses recherches. Elles récompensent un chercheur imaginatif, aventureux, pluridisciplinaire et éminemment sympathique.

Jean-Claude Bernier et Catherine Vialle
Juillet 2019

Pour en savoir plus
(1) Colloque chimie, nanomatériaux, nanotechnologies 7 novembre 2018
(2) Les fullèrenes
(3) Nanotubes et nanofilaments de carbone
(4) Le graphénomène
(5) Les matériaux stratégiques pour l’énergie
(6) Emettre de la lumière grain à grain : échange quantique d’énergie (vidéo)

 

Image : © C. SCHRÖDER/UNISTRA

- Éditorial
mediachimie

Y a-t-il un pilote dans l’avion ?

Alors que le 53e salon de l’aéronautique et de l’espace (1) vient d’avoir lieu au Bourget on peut rappeler que le premier salon en 1908 s’était tenu à Paris au Grand Palais sous l’égide de l’Automobile club. Ce
...

Alors que le 53e salon de l’aéronautique et de l’espace (1) vient d’avoir lieu au Bourget on peut rappeler que le premier salon en 1908 s’était tenu à Paris au Grand Palais sous l’égide de l’Automobile club. Ce rapprochement initial entre l’avion et l’auto semble à nouveau se réaliser en 2019. On voit en effet Airbus s’allier à Audi et Renault et expérimenter deux « taxis volants » City-Airbus et Vahana et par ailleurs plusieurs constructeurs de nouveaux hélicoptères se lancent dans l’exploitation de lignes taxi reliant le centre-ville aux aéroports des mégapoles.

Plusieurs raisons expliquent ces convergences :

  • la croissance du trafic qui, selon l’IATA, devrait doubler d’ici 2040 et atteindre plus de 8 milliards de passagers avec une croissance annuelle de 4,5% nécessitant 37 000 avions pour Airbus et 42 000 pour Boeing. En conséquence, les procédés de fabrication et de montage des appareils devront mieux s’automatiser comme sur les chaines des constructeurs d’automobiles.
  • une sécurité de plus en plus accrue, avec des commandes électriques nombreuses sûres et intelligentes. Cette évolution a été suivie par les équipementiers automobiles dont les véhicules électriques sont quasi prêts à la conduite autonome. Le développement du trafic va aussi conduire à une pénurie des pilotes dont les compagnies estiment le besoin entre 500 000 et 700 000 d’ici vingt ans. Sans évidemment passer par « zéro pilote dans l’avion », passer de 2 à 1 pour les moyen-courriers et de 5 à 2 pour les long-courriers avec des algorithmes de pilotages plus automatiques serait source d’économie financière et de formation.

Il est déjà vrai que le secteur aérien est devenu de plus en plus sûr grâce aux améliorations technologiques et à l’informatisation des commandes. Les risques et accidents ont été divisés par 8 ces 30 dernières années (avec cependant l’exception du Boeing 737 max) alors que le trafic a été multiplié par 4. L’apport de l’intelligence artificielle comme pour l’automobile devrait encore améliorer la sécurité.

Mais voilà que s’invite dans ce ciel bleu un nuage noir venu de Suède le « flygskam » ou « la honte de prendre l’avion » pour des raisons écologiques (2). En effet le prix à payer en équivalent CO2 du km passager en avion est largement prohibitif. L’exemple de Paris-Lyon, 2 heures en TGV 1,5 kg équivalent CO2, 5 heures en voiture et 80 kg équivalent CO2, 1 heure en avion et 97 kg équivalent CO2, montre une facture carbone élevée. C’est pourquoi un mouvement gagne la France, via la Scandinavie, les Pays-Bas et la Belgique, où certains citoyens souhaitent ne plus prendre l’avion pour des vols intérieurs européens et préférer le train. L’objection contraire la plus souvent observée est la durée du voyage et son prix. L’exemple du Paris Londres en avion 1h05 et 58€ ou par le Thalys en 2h28 et 157 € est démonstratif. Il faudrait donc que les sociétés de chemin de fer et les États fassent baisser le prix du rail et taxent les airs pour encourager ces comportements.

D’autres solutions sont possibles (3). Déjà un logiciel utilisé par deux compagnies permet d’optimiser les trajets pour les long-courriers et les approches des aéroports, entrainant une économie de 20 à 30% de kérosène. De nouveaux moteurs, tels ceux de Safran équipant les nouveaux appareils, sont robustes et économes (4). L’allègement des structures en passant des métaux aux matériaux composites a drastiquement diminué les consommations (5). On se rappelle « Solar impulse » et ses multiples innovations en chimie : cet avion a fait le tour du monde grâce à l’électricité (6), sans une goutte de carburant, et a ouvert le champ de recherche de la propulsion électrique (7). Même si actuellement on bute encore sur le verrou technologique du ratio énergie stockée / poids des batteries, on devrait à l’avenir rendre possible au moins les appareils hybrides pouvant parcourir une partie du trajet avec des hélices mues par des moteurs électriques à coté de moteurs thermiques classiques. À l’heure actuelle les packs de batteries ion-lithium (8) permettent déjà sur le tarmac des roulages et manœuvres au sol économes et plus silencieuses. Il reste enfin la possibilité d’utiliser grâce à la chimie du kérosène issu de la biomasse, soit des algocarburants issus des microalgues (9) soit des biokérosènes venant des huiles végétales par le procédé Vegan (HVO - Hydrotreated Vegetable Oil) mis au point par l’IFPEN et utilisé par TOTAL à la raffinerie de la Mède (10).

Je ne sais pas si vous vous priverez de vacances au soleil au Maroc aux Baléares ou pire à la Réunion pour ne pas augmenter votre empreinte carbone. Pour que vous n’ayez pas trop de honte à prendre l’avion on peut rappeler que les milliers de participants à la COP 24 à Katowice en décembre 2018 ont généré 55 000 tonnes de CO2, soit l’équivalent de l’empreinte carbone de 4600 Français en un an !

Jean-Claude Bernier
Juin 2019

Pour en savoir plus
(1) Colloque la chimie, l'aéronautique et l'espace
(2) Atmosphère ! Atmosphère ! Alerte !
(3) Demain, l’aviation plus verte et plus autonome
(4) Les défis matériaux et procédés pour les équipements aéronautiques
(5) Les nouveaux matériaux composites pour l’aéronautique
(6) Solar impulse 2 et la chimie
(7) Sur les ailes de l’avion solaire (vidéo)
(8) Le transport ou le stockage de l’énergie électrique
(9) Zoom sur la valorisation des algues
(10) Polémiques dans le monde des biocarburants
 

Image : Wikimedia / Julian Herzog. Licence CC-BY 4.0

- Éditorial
mediachimie

Les prix dissuasifs à la pompe annoncent-ils l’après-pétrole ?

Dans les années 1970 après le choc pétrolier, les prévisionnistes auguraient du « peak oil » (pic pétrolier) qui marquerait le moment où la production mondiale plafonnerait avant de diminuer en raison de l’épuisement des
...

Dans les années 1970 après le choc pétrolier, les prévisionnistes auguraient du « peak oil » (pic pétrolier) qui marquerait le moment où la production mondiale plafonnerait avant de diminuer en raison de l’épuisement des réserves mondiales. Cinquante ans après, alors que l’exploitation des huiles de schistes (1) américaines est passée par là, l’horizon du pic pétrolier a bien reculé, d’autant que les découvertes de gisements géants en Afrique, à Bahreïn, en Afrique subsaharienne, en Chine, en Alaska… se chiffrent à plus de 200 milliards de barils *.

En 2019, les prévisionnistes parlent maintenant d’un « peak oil demand » (pic de la demande pétrolière), c’est-à-dire que la consommation en pétrole diminuera avant que la production ne décroisse. Ainsi, la consommation, notamment en Europe, est de plus en plus sensibilisée par les alertes alarmistes sur le climat, les GES (gaz à effet de serre), les particules fines, la pollution et aussi par le prix des carburants à la pompe, ce qui nous incite à la diminution de l’usage des ressources fossiles.

Des faits et comportements nouveaux apparaissent. Alors que près de 60% du pétrole est encore consommé au niveau mondial par les véhicules particuliers et les transports (dont un peu moins de la moitié par nos véhicules particuliers et un peu plus par les autres transports), plusieurs pays annoncent la fin des véhicules thermiques d’ici 2040. Déjà, la réglementation européenne Euro 6 impose aux constructeurs des normes drastiques de consommation les obligeant à des prouesses techniques de « downsizing ** » et la mise sur le marché d’un nombre croissant de véhicules électriques (2). Certains gouvernements (France, Danemark) ne délivrent plus de permis d’exploration exploitation du pétrole sur leur territoire.

Même les compagnies pétrolières se diversifient en privilégiant d’abord le gaz, puis les énergies renouvelables (3). Shell annonce devenir un des premiers fournisseurs d’électricité. Total a racheté le fabriquant de batteries Saft (4) et vient d’investir sur l’emplacement de son ancienne raffinerie de Grande-Synthe les infrastructures test du projet BioTfuel destiné à l’élaboration de biocarburants de seconde génération à partir de biomasse lignocellulosique (5). Ceci-dit, même si en Norvège 60% des véhicules neufs sont électriques, il n’y a au monde en 2018 que 2,7 millions d’automobiles électriques sur le milliard de véhicules en circulation. Le calcul montre que l’électrification complète du parc mondial des véhicules particulier n’économiserait que 18 millions de barils/jour sur les 100 millions barils/jour actuels.

Pour la chimie et notamment la pétrochimie, les prévisions sont plus difficiles et suivant les agences intergouvernementales les chiffres varient. À partir du pétrole on extrait un certain nombre de produits :

  • en tête de colonne d’abord le méthane pour le formaldéhyde et l’hydrogène,
  • puis le butadiène pour les caoutchoucs, l’éthylène, le propylène, le butadiène pour les plastiques, les engrais et mousses isolantes,
  • viennent ensuite les aromatiques pour les polyesters, les polystyrènes et les produits de base pour les médicaments,
  • enfin les huiles et produits lourds.

Toutes ces fabrications utilisent environ 13% du pétrole, part qui pourrait monter à 22%, voire doubler, d’ici 2040 sans régulation comme par exemple l’interdiction mondiale des objets en plastique à usage unique et l’obligation planétaire du recyclage (6).

Pour les bâtiments, l’isolation et la réglementation thermique de la très basse consommation (BBC) va entrainer une baisse de la consommation du gasoil que l’on estime de l’ordre de 70 millions de TEP d’ici 2040.

La chimie verte aura aussi sa part dans l’économie des ressources carbonées fossiles. Arkema, par exemple, investit des centaines de millions en Asie pour sa 4e usine de polyamide fabrication à base de plante de ricin (7). La chimie végétale comme la chimie durable entrainera une baisse de la consommation d’énergie, de solvants et de déchets. Les procédés biotechnologiques se sont développés par crainte du manque de ressources fossiles mais aussi au début de notre décennie à l’approche de la barre des 120 $ le baril. Les procédés de fermentation bactérienne des sucres, des déchets végétaux et du bois pour la production d’isobutène matière première pour le caoutchouc et les plastiques ont été multipliés par des start-ups et les investissements de grands groupes, mais la chute du baril à 60$ a aussi fait chuter les espoirs des industriels confrontés à la concurrence et la compétitivité des mêmes produits issus de la pétrochimie (8). En Europe, on estime que les produits biosourcés, bien que ne représentant en 2019 que 3% du total des produits chimiques, ont un réel potentiel de progression. La condition est d’une part qu’ils présentent de meilleures propriétés et d’autre part de trouver des créneaux comme l’alimentation et la cosmétique où les consommateurs et les grandes enseignes demandent plus de « naturalité ».

Il est clair que toutes ces évolutions feront baisser les besoins mais il reste à prévoir la date à laquelle la courbe de consommation s’inversera et le « pic oil demand » interviendra. Les cabinets d’experts qui partagent cette analyse donnent une fourchette assez large : 2030 pour BP, 2050 pour l’AIE (agence internationale de l’énergie) avec des valeurs de production de 150 millions de barils/jour. Alors oui, au Japon la consommation stagne, l’Europe a réduit sa consommation de 4% en 5 ans mais le reste du monde l’a augmentée de 16%. L’accès à l’énergie, même chère, de plus de 5 milliards d’humains doit nous faire encore patienter de quelques dizaines d’années pour « l’après-pétrole ».

Jean-Claude Bernier et Catherine Vialle
Juin 2019

* Un baril est une unité de mesure pour le pétrole, qui vaut exactement 42 gallons américains, soit environ 159 litres.
** Le downsizing des moteurs vise à diminuer la cylindrée d’un moteur en gardant la même puissance finale et ainsi réduire la consommation.

Pour en savoir plus :
(1) Gaz de schistes : quels problèmes pour l’environnement et le développement durable ?
(2) L’industrie chimique au service de l’automobile
(3) Un exemple d’énergie renouvelable : l’essence verte
(4) Applications présentes et futures des batteries
(5) Des carbohydrates aux hydrocarbures
(6) Panique sur les déchets
(7) La grande aventure des polyamides
(8) Les variations de prix du baril et les énergies renouvelables
 

- Éditorial
mediachimie

La photosynthèse artificielle : une utilisation du dioxyde de carbone comme matière première

Non le gaz carbonique n’est pas un polluant, chimistes et biochimistes répètent à l’envie : le CO2 c’est aussi la vie ! (1) En effet si le carbone est l’élément essentiel du monde vivant, couplé à deux oxygènes et
...

Non le gaz carbonique n’est pas un polluant, chimistes et biochimistes répètent à l’envie : le CO2 c’est aussi la vie ! (1) En effet si le carbone est l’élément essentiel du monde vivant, couplé à deux oxygènes et caressant une feuille sous le soleil et en présence d’eau, il permet aux végétaux de produire des molécules organiques telles que les sucres et la cellulose, âmes de la biomasse. Cette réaction naturelle de la photosynthèse fascine depuis longtemps les chercheurs qui rêvent de la reproduire (2).

Depuis plus de vingt ans, l’imagination des électrochimistes a permis de belles avancées (3). Le schéma le plus efficient couple une cellule photovoltaïque (4) qui sous rayonnement solaire fournit des électrons à une cellule électrochimique qui oxyde l’eau à l’anode et réduit le CO2 à la cathode.

Plusieurs réalisations ont déjà vu le jour fournissant à partir du CO2 du CO, des alcools, des acides organiques et même du méthane. Les rendements ont été parfois très corrects et supérieurs à celui de la photosynthèse naturelle, mais ils nécessitent le plus souvent des matériaux peu abondants et coûteux - des semiconducteurs de type AsGa, des catalyseurs à base de métaux précieux (rhodium, iridium, platine…) - rendant ces cellules difficilement extrapolables à grande échelle.

Pour passer à une échelle industrielle, ces systèmes mimant la photosynthèse naturelle doivent remplir plusieurs conditions :

  • une réduction catalytique efficace du CO2 avec des électrocatalyseurs ne comportant pas de métaux rares ou chers (5) ;
  • un milieu électrolytique stable et de pH peu acide pour limiter la corrosion ;
  • un design de cellule avec une répartition des compartiments anodiques et cathodiques optimales pour éviter les pertes ohmiques ;
  • un couplage à un système photovoltaïque robuste et peu coûteux.

C’est ce qu’a réussi un groupe de chercheurs européens coordonné par le Laboratoire de Chimie des Processus Biologiques (LCPB) du Collège de France (*). Après des années de recherche ce groupe a mis au point un système comprenant :

  • une cellule d’électrocatalyse optimisée avec une distance anode-cathode réduite permettant un courant stable sous une tension inférieure à 3V ;
  • des solutions électrolytes peu corrosives comportant des concentrations stabilisantes de bicarbonate ou carbonate de cesium ;
  • des matériaux d’électrodes à base de cuivre où à la cathode sont présentes des couches d’oxyde Cu2O et CuO (6), la dernière montrant une structure dendritique nanostructurée poreuse ;
  • une cellule photovoltaïque originale constituée de pérovskite (7) de type CH3NH3 Pb I3-x Brx fabriquée simplement par multicouches fonctionnelles avec des éléments abondants.

En fonctionnement, sous un flux de gaz CO2, la réduction de ce gaz et l’oxydation de l’eau fournissent des mélanges d’hydrocarbures tels que C2H4, C2H6, et CO, H2 bases de la chimie organique. Le rendement calculé par rapport à CO2 est de 2,3% (plus élevé que les 1% de la photosynthèse naturelle). Ce qui est important à souligner est que ce nouveau procédé mêle au moins deux innovations :

  • une cellule électrocatalytique utilisant un métal abondant et très utilisé le cuivre
  • et un générateur photovoltaïque à base de pérovskite se fabriquant à température ordinaire par sérigraphie de multicouches de matériaux peu coûteux, dont la fabrication industrielle commence.

Bien sûr des études complémentaires de procédés sont à faire car la cellule fonctionne avec du dioxyde de carbone pur alors que dans l’atmosphère (8) il est dilué à 400 ppm. L’augmentation des surfaces de contact ou le captage et la concentration peuvent être des solutions futures pour le développement industriel (9). Alors on peut se mettre à rêver à une économie de carbone en cycle fermé, en imaginant que nos combustibles seraient issus du même dioxyde de carbone produit par leur combustion. Voilà une belle solution à l’épuisement des ressources carbonées fossiles.

Jean-Claude Bernier et Catherine Vialle
Mai 2019

 

Pour en savoir plus
(1) Le CO2, matière première de la vie (Chimie et … Junior)
(2) Que faire du CO2 ? De la chimie ! 1334
(3) Les nouvelles cellules solaires nanocristallines 242
(4) Le soleil comme source d’énergie – le photovoltaïque 268
(5) Énergie électrique et réduction du dioxyde de carbone : quels électrocatalyseurs ? 878
(6) Expérience de réduction de l’oxyde de cuivre II (The reduction of copper oxide) 987
(7) Cristaux, cristallographie et cristallochimie 934
(8) Atmosphère ! Atmosphère ! Alerte ! 1555
(9) Le dioxyde de carbone : enjeux énergétiques et industriels 875


(*) Low-cost high-efficiency system for solar-driven conversion of CO2 to hydrocarbons, Tran Ngoc Huan, Daniel Alves Dalla Corte, Sarah Lamaison, Dilan Karapinar, Lukas Lutz, Nicolas Menguy, Martin Foldyna, Silver-Hamill Turren-Cruz, Anders Hagfeldt, Federico Bella, Marc Fontecave, Victor Mougel, Proceedings of the National Academy of Sciences Mar 2019, 201815412
DOI: 10.1073/pnas.1815412116
 

- Éditorial
mediachimie

Vive le Coradia iLint

Cela fait déjà presque six mois que deux trains à hydrogène Coradia iLint d’Alstom sont exploités commercialement en Allemagne sur la ligne Cuxhaven - Buxtehude de 100 km. La France se réveille à peine et un chargé de
...

Cela fait déjà presque six mois que deux trains à hydrogène Coradia iLint d’Alstom sont exploités commercialement en Allemagne sur la ligne Cuxhaven - Buxtehude de 100 km. La France se réveille à peine et un chargé de mission le député Benoit Simian a remis en novembre un rapport sur l’utilisation de tels trains pour les nombreuses petites lignes non électrifiées (1).

Vous avez tous sans doute emprunté des TER régionaux marchant au gazole avec des moteurs diesel, bruyants et dont les fumées noircissent les quais et halls des gares. Ce nouveau train franco-allemand est plus silencieux et n’émet que de la vapeur d’eau dans ses fumées. Il a été mis au point par le constructeur en 2016 grâce aux innovations menées par deux centres, celui de Salzgitter en Allemagne pour la partie électrique et celui de Tarbes en France pour la partie traction et moteurs.

Quelle est son originalité ? L’énergie électrique lui est fournie par une pile à hydrogène (2) qui transforme ce gaz combiné à l’oxygène de l’air en eau et électricité.

Faisons un peu de chimie (3). Dans la pile à hydrogène à l’anode se produit la demi-réaction H2 → 2 H+ + 2e-. Les électrons passent alors dans le circuit extérieur de charge. Les ions H+ qui ont traversé la membrane (électrolyte solide laissant passer les ions mais bloquant les électrons) rencontrent à la cathode l’oxygène de l’air et la demi-réaction suivante se produit ½ O2 + 2 H+ + 2e- → H2O. Ces réactions sont catalysées par une micro-couche de platine. L’électricité fournie est envoyée dans des batteries ion/lithium (4) qui servent de tampon et alimentent les moteurs électriques de traction du train. Ces moteurs peuvent aussi lors des freinages et ralentissements envoyer du courant pour recharger ces batteries. Un algorithme règle le fonctionnement des piles et des batteries en fonction de l’énergie demandée pour économiser l’hydrogène. Le train peut emporter 300 passagers à des vitesses comprises entre 80 et 140 km/h avec une autonomie d’environ 800 km.

Sur la ligne en Allemagne, près de la gare de Bremervörde se trouve le « ravitaillement » alimenté par des camions-citernes d’Air Products. L’entreprise Linde fournira prochainement une station hydrogène sous la forme d’un grand container d’acier contenant l’hydrogène sous pression. Les trains s’arrêtent le matin pour faire en une dizaine de minutes le plein d’hydrogène qui est stocké dans des réservoirs sur le toit des voitures à côté des piles à hydrogène (5). Ce plein d’environ 200 kg d’hydrogène lui donne une autonomie d’environ 800 km ce qui est suffisant pour faire plusieurs allers et retours et desservir 5 gares par jour sur le trajet. Le Land de Basse-Saxe a déjà commandé 14 Coradia à Alstom qui devraient être livrés dès 2020. Pour les dirigeants allemands c’est une alternative écologique aux diesels car bien moins polluants. Certes pour l’instant ils fonctionnent avec de « l’hydrogène gris » issu du steam craking du gaz ou des hydrocarbures qui dégage du CO2 (6), mais l’objectif est d’avoir dans l’avenir de « l’hydrogène vert » (7) issu de l’électrolyse de l’eau par un courant électrique fourni par des éoliennes par exemple. Un champ de 10 MW pourrait d’après les calculs fournir par jour 2,5 tonnes d’hydrogène pouvant alimenter 12 à 14 trains.

Il est paradoxal que c’est en Allemagne que s’inscrit cette première mondiale alors qu’Alstom est une société française. Nous avons aussi en France le 2e fournisseur d’hydrogène mondial, Air Liquide, et nombre de start-ups performantes dans le domaine du stockage comme McPhy Energy. Toutes les conditions de recherche et de développement sont réunies, encouragées par le plan national de développement de l’hydrogène. Pour rattraper notre retard j’espère que le rapport de Benoit Simian permettra de voir que, plutôt d’électrifier les quelques centaines de voies secondaires, il sera plus économique de développer les Coradia d’Alstom sur le réseau français dès 2022, et que la réglementation sur l’hydrogène carburant évoluera comme en Allemagne. C’est pour le bénéfice de l’emploi, pour garder aussi une longueur d’avance en France pour le ferroviaire et pour lutter contre la concurrence chinoise de CRRC.

Jean-Claude Bernier et Catherine Vialle
Mars 2019

Pour en savoir plus :
(1) Chimie et transport, quel rapport ?
(2) Fonctionnement de la pile à combustible
(3) La chimie et le rail
(4) Piles à combustible et batteries au lithium
(5) Le transport ou le stockage de l’énergie électrique
(6) Et revoilà l’hydrogène
(7) L’hydrogène vert au secours des renouvelables
 

- Éditorial
mediachimie

L’affaire du siècle se trompe-t-elle de cible ?

Vous connaissez sans doute « l’affaire du siècle » dont l’objet est d’attaquer l’État français au motif « d’inaction climatique ». C’est une initiative de quatre ONG, qui a recueilli sous forme de pétitions via les
...

Vous connaissez sans doute « l’affaire du siècle » dont l’objet est d’attaquer l’État français au motif « d’inaction climatique ». C’est une initiative de quatre ONG, qui a recueilli sous forme de pétitions via les réseaux sociaux près de 2 millions de signatures. On peut bien sûr s’étonner qu’on ne se soit pas attaqué d’abord à l’État allemand ou chinois où la production de 1 kWh dans ces pays s’accompagne respectivement de l’émission de 550 g et de 700 g de CO2 alors qu’en France elle n’est que de 60 g (1). Mais d’après l’avocate de ces ONG, cette conduite française vertueuse n’est pas suffisante !

Or si jugement il y a, j’imagine que la justice voudra interroger toutes les parties et les choses risquent de se gâter. Car deux positions s’affronteront et la polémique qui enfle actuellement aux États-Unis et en Europe jusqu'en France sur le rôle du gaz carbonique comme élément essentiel de l’effet de serre et du réchauffement climatique s’y invitera (2). Des publications apparemment sérieuses de spectroscopistes spécialisés dans le rayonnement l’infra-rouge (IR) prétendent montrer que l’émissivité et l’absorption IR sont saturées dès 200 à 300 ppm de CO2 dans l’atmosphère et que le doublement de sa concentration ne modifierait en rien cette saturation. S’ensuit dans la littérature scientifique un débat sur les émissions infra-rouge de la Terre sous forme de courbes de Planck et leur modification dans la gamme d’absorption du CO2 autour de 15 microns. Il en est déduit que les climatologues « réchauffistes » ont eu tort dans leur modèle d’assimiler les molécules de gaz à des corps noirs dont les propriétés sont l’apanage des solides et non des gaz. Et donc que le CO2 ne peut contribuer à l’augmentation de température (3).

Cette thèse de plus en plus partagée est évidemment combattue par les scientifiques du GIEC qui maintenant expliquent que l’atmosphère est constituée de plusieurs couches en fonction de l’altitude, absorbant et réfléchissant l’IR, pour sauver leur modèle (4), et pour certains d’entre eux (pas tous) crucifiant les scientifiques s’opposant à leur thèse. Le problème est que les mesures disponibles des températures de la troposphère par satellites et ballons-sondes montrent qu’elles ne varient que très peu depuis près de 20 ans alors que les émissions de CO2 ont augmenté de plus de 10% (365 ppm en 1998, 408 ppm en 2018). De plus, les résultats des mesures s’écartent de plus en plus des modèles d’extrapolation des températures terrestres du GIEC qui prévoyaient en moyenne 0,4°C sur cette période. Plus grave encore est la fameuse courbe en forme de crosse de Hockey qui a disparu du 5e rapport du GIEC et qui avait affolé le monde politique et médiatique. D’après plusieurs spécialistes statisticiens elle aurait été manipulée par son auteur. Au secours de ce dernier plusieurs climatologues auraient aussi gommé l’optimum climatique de l’époque romaine et du Moyen Âge, en contradiction avec les preuves apportées par les historiens du climat et archéologues dignes de foi (5).

Ces polémiques jettent un trouble quasi tragique sur le modèle alarmiste de « l’urgence climatique » exigeant de la part de l’État des actions immédiates qui auront toutes chances d’avoir peu ou pas d’effet sur un phénomène qui serait du domaine de la variabilité naturelle. Au cours du dernier millénaire, canicules et sécheresses et petits âges glaciaires se sont succédé sans que le CO2 puisse être mis en cause. Avec une population en majorité croyante on entamait alors des processions ou des neuvaines pour que cessent ces phénomènes, aujourd’hui comme la religiosité a disparu, à l’heure des réseaux sociaux on pétitionne  ! « Consensus omnium » !

Et pourtant dans un sujet aussi complexe que le climat, d’une erreur d’interprétation peut résulter un bien, en chimie une réaction loupée, un produit parasite peuvent nous en apprendre plus (6) sur les mécanismes réactionnels. Alors oui pour une meilleure isolation des bâtiments, oui pour une réduction de la consommation des ressources carbonées naturelles, oui pour l’énergie décarbonée, oui pour un changement de paradigme pour les transports. Transférons les milliards consacrés aux élucubrations climatiques à la recherche sur les véhicules électriques, sur les nouveaux réacteurs nucléaires, sur le stockage de l’énergie (7), sur le recyclage des matières de haute technologie, sur les procédés propres… Oui pourquoi pas à l’initiative de J. Jouzel et de P. Larroutourou pour le pacte finance - climat et à la création d’une banque européenne pour financer les recherches sur la transition énergétique, mais de grâce ne parlons plus de climat mais appelons le « pacte finance - préservation des ressources naturelles ».

Jean-Claude Bernier
Février 2019

Pour en savoir plus :
(1) Le challenge de l’électricité verte (Chimie et… junior)
(2) Le changement climatique (Chimie et… junior)
(3) Le changement climatique : question encore ouverte ?
(4) Le changement climatique : perspectives et implications pour le XXIe siècle
(5) Fluctuations climatiques extrêmes et sociétés au cours du dernier millénaire
(6) La maison écologique
(7) Cette « chère » transition énergétique
 

- Éditorial
mediachimie

Avant de traverser la rue, passez donc au Village de la Chimie

Lycéens, étudiants, et même parents, un avenir ça se prépare. Et si vous en êtes convaincus, il y a des coïncidences à ne pas manquer. Alors que Parcours up vient de s’ouvrir fin janvier, les 15 et 16 février prochain se
...

Lycéens, étudiants, et même parents, un avenir ça se prépare. Et si vous en êtes convaincus, il y a des coïncidences à ne pas manquer. Alors que Parcours up vient de s’ouvrir fin janvier, les 15 et 16 février prochain se tient à la Cité des sciences et de l’industrie à Paris le « Village de la chimie des sciences de la nature et de la vie », très grand rassemblement d’entreprises et d’établissements essentiel pour obtenir un large panorama des emplois et métiers de la chimie.

Le village regroupe plus de 30 entreprises, PME, starts-up et grandes industries, ainsi que plus de 30 établissements de formation, universités, grandes écoles et institutions spécialisées.

Ainsi vous pourrez au Village :

  • vous informer auprès des entreprises des métiers, des profils recherchés, des déroulements de carrières dans l’industrie. Des spécialistes ingénieurs et des chargés des ressources humaines répondront à vos questions.
  • vous orienter grâce aux établissements et aux responsables de formation présents qui vous renseigneront sur les filières et parcours du CAP au BTS, IUT, prépas, licences Pro, masters, écoles d’ingénieurs, doctorats, sans oublier l’apprentissage.
  • vous préparer à la recherche d’emploi grâce aux ateliers pour vous entraîner à une utilisation efficace d’internet et des réseaux sociaux.
  • vous exercer à l’entretien d’embauche et pourquoi pas vous initier à la création d’entreprise.

De nombreuses conférences et tables rondes peuvent aussi vous donner un large aperçu des applications novatrices de la chimie pour résoudre les grands défis de l’énergie, de l’environnement et de la santé.

La France a besoin de techniciennes et de techniciens, d’ingénieures et d’ingénieurs, de chercheuses et de chercheurs. La chimie et la biochimie sont les secteurs industriels où la parité homme/femme est presque réalisée. Venez nombreux et nombreuses, les métiers de la chimie vous attendent à la Cité des sciences et de l’industrie les 15 et 16 février.

En complément la tenue d’un stand d’information, le vendredi et le samedi à 14h, Mediachimie anime une conférence sur le thème : La chimie, science de l’innovation, recrute !

Découvrez les formations et les métiers qui embauchent sur le site d’orientation mediachimie.org.

Jean-Claude Bernier et Catherine Vialle
Février 2019

Site du village : http://www.villagedelachimie.org
Planning des conférences : http://www.villagedelachimie.org/inscrivez-vous/planning-des-conferences-et-ateliers/

- Éditorial
mediachimie

Le jaune, une couleur très tendance

Mi-janvier, la route du Tanneron (06) s’illumine d’une teinte jaune dorée avec l’éclosion des mimosas. Tout en bas au carrefour, des gilets jaunes facilitent la circulation loin des agitations parisiennes. Tout est jaune
...

Mi-janvier, la route du Tanneron (06) s’illumine d’une teinte jaune dorée avec l’éclosion des mimosas. Tout en bas au carrefour, des gilets jaunes facilitent la circulation loin des agitations parisiennes. Tout est jaune en ce pays grassois où nos sens s’enivrent d’effluves et de lumière (1).

Mais qu’est-ce vraiment que la couleur jaune ? En réalité c’est une sensation physiologique (2). Lorsqu’un photon de longueur d’onde 580 nm frappe les cellules cônes de notre rétine, le rétinal, qui est lié à une protéine - l’opsine, entame une photo-isomérisation qui déclenche une série de réactions biochimiques provoquant des impulsions électriques transmises au cerveau via le nerf optique. L’interprétation du cerveau de ces impulsions conduit à l’identification du jaune. On aurait la même sensation à la perception simultanée de deux lumières, l’une à 700 nm (rouge) et l’autre à 530 nm (vert), qui au cerveau reconstitueraient le jaune, la vision des couleurs par le système œil-rétine-cerveau fonctionnant avec une synthèse additive des couleurs.

La vision enchanteresse des pompons des fleurs de mimosa ne doit pas nous faire oublier que dans le sud, cette plante est devenue quasi invasive tant elle se plait dans le climat ensoleillé de la Côte d’Azur. Curieusement elle n’est pas indigène. Elle a été ramenée d’Australie vers l’Angleterre à la fin du XVIIIe siècle par les botanistes de l’expédition de James Cook et pour la France, ce fut l’expédition dans les terres australes de Nicolas Baudin au début du XIXe siècle qui ramena les premiers pieds vivants. Dès 1880, elle fleurit en pleine terre dans les jardins d’un château à Cannes La Bocca. Cette plante qui fleurit en hiver se souvient peut-être de sa date de floraison dans l’hémisphère Sud !

Tout autour de Grasse, les mimosas sont une matière première pour la fabrication des parfums. Des fleurs on extrait l’huile essentielle (1800 g pour 1000 kg) par hydrodistillation (3). L’extraction par solvants volatils comme l’hexane ou l’éther de pétrole puis filtration permet d’obtenir un concentré dit « concrète » (pâte plus ou moins solide). Ces « concrètes » sont alors solubilisés à chaud dans l’éthanol pour obtenir après filtration « l’absolue de mimosa » (4). Sont présentes alors quantité de molécules, entre autres : l’ester méthylique de l’acide salicylique, l’aldéhyde benzoïque, l’aldéhyde cuminique, le géraniol et des terpènes comme le triterpénol ou le lupénol. Cette « absolue » très chère est une base pour toute une série de parfums (Amarige, Paris, Champs Elysées, Moment Suprême…). Leurs caractéristiques : une odeur herbacée, de miel poudré, de vanille. L’huile essentielle diluée est recommandée comme antiseptique, anti-stress et apaisante.

Pour revenir au jaune des gilets, les gilets de sécurité dits de haute visibilité (sic) sont obligatoires pour les personnels sur les chantiers (5) et depuis 2008 en France dans les automobiles. Ils sont en tissu de coton ou en polyester respirant dont les fibres sont traitées avec des pigments fluorescents (6) c’est-à-dire qu’ils renvoient la lumière (7) lorsqu’ils dont éclairés par un flux d’excitation compris entre 360 et 405 nm, d’un jaune lumineux ! Les pigments organiques sont nombreux, bien sûr le plus ancien la fluorescéine, mais aussi la rhodamine, la coumarine, les cyanines… Les gilets montrent aussi des bandes grises réflectorisantes qui comportent des microbilles ou des micro-prismes de verre qui peuvent briller fortement même sous un faible éclairage et solliciter prioritairement nos cellules bâtonnets de la rétine.

Il vous reste si vous voulez rester branchés en ce mois de janvier à vous nourrir d’œufs car leur jaune est très riche en caroténoïdes comme la lutéine et la zéoxantine. Ils ont aussi un bon pouvoir liant et émulsifiant (8).

Surtout n’en faites pas une jaunisse tout cela passera en février à la chandeleur, avec les crêpes, rondes et jaunes comme le Soleil !

Jean-Claude Bernier et Catherine Vialle
Janvier 2019

Pour en savoir plus
(1) Lumière et couleurs (vidéo)
(2) La chimie crée sa couleur… sur la palette du peintre
(3) Hydrodistillation (vidéo)
(4) Ingrédients odorants et design olfactif
(5) Vers des textiles intelligents pour des vêtements performants et innovants
(6) Le textile, un matériau multifonctionnel
(7) L’art du verrier : des nanotechnologies depuis l’Antiquité !
(8) La chimie des sens ? Il y a tant de découvertes à faire !
 

- Éditorial
mediachimie

Les joyeuses molécules de Noël

En ce temps de fêtes de Noël et de fin d’année, de nombreuses molécules vont nous bercer et nous enchanter, contribuant à l’atmosphère gourmande et odorante. Tout d’abord place au roi de la fête : le chocolat (1) fabriqué
...

En ce temps de fêtes de Noël et de fin d’année, de nombreuses molécules vont nous bercer et nous enchanter, contribuant à l’atmosphère gourmande et odorante.

Tout d’abord place au roi de la fête : le chocolat (1) fabriqué à base d’ingrédients naturels dont le cacao et le sucre. Le cacao contient des polyphénols qui piègent les radicaux libres toxiques pour l’organisme. Il contient aussi des triglycérides dont en majorité l’acide oléique (2), un acide gras insaturé (omega-3), ingrédient idéal pour combattre le cholestérol (3). D’autres oligoéléments y sont présents comme le magnésium, le phosphore et le potassium sans oublier des endorphines stimulantes et euphorisantes (4), bien nécessaires en hiver.

Viennent aussi d’autres molécules au sein des délicieux pains d’épices. D’abord le gingérol du gingembre lui donne son piquant. Pour le gout de saveur douce, sucrée et un peu épicée, la molécule responsable est la zingérone qui apparait lorsque le gingembre est chauffé pendant la cuisson (5).

Pour se réchauffer en ville, vous prendrez bien un cornet de marrons bien chauds. Lorsqu’elles sont grillées, les châtaignes dégagent quantité de composés volatils par réactions à haute température. La chaleur développe aussi diverses molécules dont le γ-butyrolactone qui donne en bouche un léger gout sucré caramélisé et le furfural qui apporte le côté boisé avec une légère odeur d’amande (6).

Les molécules odoriférantes sont aussi de la partie pour Noël. Ne serait-ce que l’odeur forte et magique des aiguilles du sapin. La responsable est la molécule pinène, présente sous ses deux formes isomères α et β. L’α-pinène est connu comme antiseptique présent également dans la lavande et la sauge. L’autre odeur fraiche du sapin est celle de l’acétate de bornyle utilisé aussi dans les parfums ou les désodorisants (7). Synthétisé naturellement par plusieurs conifères il est aussi utilisé en phytothérapie pour ses propriétés sédatives (8). Côté cadeaux, vous recevrez ou offrirez peut-être des parfums, subtils mélanges de produits naturels et de composés synthétisées (9) (10).

Enfin, si lors des repas de fêtes vous garnissez la table avec du houx n’ingérez pas les baies rouges, elles contiennent des alcaloïdes qui peuvent être toxiques en grande quantité (11). De même, en vous embrassant sous le gui à la Saint-Sylvestre comme le veut la tradition, ne laissez pas trainer par terre trop de baies blanches translucides, elles contiennent de la viscotoxine qui est toxique, tant pour les hommes que pour les animaux de compagnie.

Laissez-vous entourer de molécules naturelles et euphorisantes. Joyeux Noël et bonnes fêtes !

Jean-Claude Bernier et Catherine Vialle
décembre 2018

Pour en savoir plus sur Mediachimie.org
(1) Le chocolat est-il bon pour la santé ?
(2) Acide oléique (produit du jour de la SCF)
(3) Les emplois thérapeutiques du chocolat
(4) Sport et cerveau (Chimie et... Junior)
(5) Le gout : de la molécule à la saveur
(6) Les méthodes de mesure des odeurs : instrumentales et sensorielles
(7) Vision d’avenir de l’industrie dans le domaine des parfums, arômes, senteurs et saveurs
(8) Un exemple de production de substances actives ; le pouvoir des plantes
(9) Le laboratoire des odeurs (vidéo)
(10) Ingrédients odorants et design olfactif
(11) La bonne chimie est-elle dans le bon dosage ?
 

  

Image d'illustration © DR. Images sous licence CC0 sauf cake pain épices (licence CC2, F. Voisin Demery)

 

- Éditorial
mediachimie

Le grand K va disparaître ?

Le 16 novembre dernier à Versailles la Conférence générale des poids et mesures (CGPM) a voté la condamnation du « grand K ». À partir du 20 mai 2019 la définition du kilogramme sera basée sur une constante fondamentale
...

Le 16 novembre dernier à Versailles la Conférence générale des poids et mesures (CGPM) a voté la condamnation du « grand K ». À partir du 20 mai 2019 la définition du kilogramme sera basée sur une constante fondamentale de la physique : la constante de Planck h en kg.m2/s ; le « grand K » n’a donc plus que six mois à vivre.

C’est toute l’histoire du système international d’unités (SI) qui bascule. La création du système métrique décimal remonte à la Révolution française. Les définitions du kilogramme, basé sur le poids d’un décimètre cube d’eau pure à 4°C, et du mètre, correspondant au dix millionième de la distance du pôle Nord à l’équateur sur le méridien de Paris, n’étaient plus satisfaisantes.

Dès 1799 deux étalons furent forgés en platine (1) : un cylindre d’un kilogramme et une barre d’un mètre de longueur. Afin d’accroître la stabilité des étalons, deux nouveaux étalons furent forgés en 1889 dans un alliage de platine iridium (2). Le cylindre de 39 mm de haut fut alors enfermé sous trois cloches de verre dans un coffre-fort au Bureau international des poids et mesures (BIPM) à Sèvres près de Paris : c’est « le grand K », qui a servi de référence pendant près de 130 ans. Plusieurs répliques ont été faites dès 1875 lorsque le système international d’unités (SI) fut adopté par plus de soixante pays. Le « grand K » n’a quitté sa chambre forte que trois fois pour le comparer à ses « enfants », on s’aperçut alors qu’au fil du temps la masse du « grand K » était inférieure de 50 microgrammes à celles de ses répliques (5.10-8 kg, un grain de sable).

Lors de la 21e Conférence générale des poids et mesures en 1999, il fut demandé aux laboratoires nationaux d’affiner les expériences pour relier l’unité de masse à des constantes fondamentales. En France les chercheurs du CNAM, du LNE (Laboratoire national de métrologie et d’essais) et de l’Observatoire de Paris unirent leurs efforts pour confronter leurs résultats avec ceux du NRC (National Research Council) au Canada et du NIST (National Institute of Standards and Technology) aux États-Unis, ce qui aboutit en 2017 à la détermination de la valeur de la constante de Planck h avec une incertitude de moins de 5.10-8. Les chercheurs ont utilisé pour cela une balance de Kibble, une balance un peu particulière car elle ne comporte qu’un seul plateau, l’autre étant constitué d’une boucle magnétique au centre de laquelle on fait passer un courant précis dans un conducteur qui développe une force électromagnétique que l’on relie à la constante de Planck. Une seconde méthode utilisée par des chercheurs allemands consiste à fabriquer une sphère parfaite en silicium cristallisé très pur (3) d’un kilogramme. En comptant le nombre d’atomes de cette sphère, on calcule le nombre d’Avogadro avec une grande précision que l’on relie aussi à la constante de Planck. Grâce à ces méthodes et à la confrontation des résultats en 2017 la valeur de la constante a été fixée à h = 6,626 070 15 × 10−34 kg.m2.s-1 (J.s en SI).

Dans la foulée et en cascade à partir de mai 2019, la seconde, le mètre, le kilogramme, le kelvin, l’ampère (4), le candela et la mole (5) auront des définitions actualisées. Donnons quelques exemples :

  • la seconde, calée sur la fréquence de transition hyperfine du césium 133 égale à 9 192 631 770 Hz équivalent à s-1
  • le mètre à partir de la vitesse de la lumière dans le vide c = 299 792 458 m.s-1
  • le kilogramme à partir de sa relation avec h = 6,626 070 15 × 10-34 kg.m2.s-1
  • la mole, unité de matière, qui contient 6,022 140 76 × 1023 entités élémentaires, correspondant à la valeur de la constante d’Avogadro NA en mol-1

Toutes ces valeurs sont issues des quatre constantes h (constante de Planck), e (charge élémentaire), k (constante de Boltzmann) et NA (nombre d'Avogadro) qui ont nécessité un travail long à l’échelle internationale depuis plusieurs dizaines d’années, avec de multiples expérimentations. Elles ont permis la convergence des résultats, entérinés par CODATA (Committee on Data of the International Council for Science).

On peut se poser la question de savoir si ces précisions sont vraiment utiles ? En fait, pour la seconde et la mesure du temps, on connait la précision des horloges atomiques qui ont permis la définition étonnante des GPS. Pour la médecine et la pharmacie la définition exacte des doses et micro-formulations a besoin de références. Pour nos balances de ménage et nos pèse-personnes ce n’est pas 50 microgrammes après la retraite du grand K qui changera nos vies. En revanche, c’est une nouvelle ère qui s’ouvre pour la métrologie où l’on change de paradigme. En effet, les constantes ne reposent plus sur des objets matériels mais sur des facteurs physiques de nature fondamentale universelle.

Jean-Claude Bernier et Catherine Vialle
novembre 2018

Pour en savoir plus
(1) Produit du jour de la Société chimique de France
(2) Le mètre de 1889
(3) Toujours plus petit ! (Chimie et… junior)
(4) Ampère et la chimie
(5) La constante d’Avogadro (vidéo)

Voir aussi sur le site du LNE (Laboratoire national de métrologie et d’essais)
Le kilogramme
Introduction au système international d’unités

 

 
Réplique du Grand K. © National Institute of Standards and Technology.