- Événements

27 juin 2019 : Festival des couleurs à Saint-Véran

À l'occasion de l'année de la chimie, jeudi 27 juin 2019 aura lieu Le festival des couleursà la Maison du Soleil de Saint-Véran (site de la Maison du Soleil). Programme du Festival des couleurs 14h00 : De la couleur à
...

À l'occasion de l'année de la chimie, jeudi 27 juin 2019 aura lieu

Le festival des couleurs

à la Maison du Soleil de Saint-Véran (site de la Maison du Soleil).

Programme du Festival des couleurs

  • 14h00 : De la couleur à foison !
    Expériences chimiques époustouflantes avec Jean-Pierre Foulon : le volcan, les encres invisibles, la bouteille bleue…
     
  • 16h00 :  De quoi est composée la matière
    Le tableau de la classification périodique des éléments avec Jean-Claude Bernier;
     
  • À partir de 15h30 second groupe de manipulations, expériences…;
     
  • 18h00 : Les véhicules électrique pas si verts que ça
    Conférence de Jean-Claude Bernier
- Éditorial
mediachimie

La photosynthèse artificielle : une utilisation du dioxyde de carbone comme matière première

Non le gaz carbonique n’est pas un polluant, chimistes et biochimistes répètent à l’envie : le CO2 c’est aussi la vie ! (1) En effet si le carbone est l’élément essentiel du monde vivant, couplé à deux oxygènes et
...

Non le gaz carbonique n’est pas un polluant, chimistes et biochimistes répètent à l’envie : le CO2 c’est aussi la vie ! (1) En effet si le carbone est l’élément essentiel du monde vivant, couplé à deux oxygènes et caressant une feuille sous le soleil et en présence d’eau, il permet aux végétaux de produire des molécules organiques telles que les sucres et la cellulose, âmes de la biomasse. Cette réaction naturelle de la photosynthèse fascine depuis longtemps les chercheurs qui rêvent de la reproduire (2).

Depuis plus de vingt ans, l’imagination des électrochimistes a permis de belles avancées (3). Le schéma le plus efficient couple une cellule photovoltaïque (4) qui sous rayonnement solaire fournit des électrons à une cellule électrochimique qui oxyde l’eau à l’anode et réduit le CO2 à la cathode.

Plusieurs réalisations ont déjà vu le jour fournissant à partir du CO2 du CO, des alcools, des acides organiques et même du méthane. Les rendements ont été parfois très corrects et supérieurs à celui de la photosynthèse naturelle, mais ils nécessitent le plus souvent des matériaux peu abondants et coûteux - des semiconducteurs de type AsGa, des catalyseurs à base de métaux précieux (rhodium, iridium, platine…) - rendant ces cellules difficilement extrapolables à grande échelle.

Pour passer à une échelle industrielle, ces systèmes mimant la photosynthèse naturelle doivent remplir plusieurs conditions :

  • une réduction catalytique efficace du CO2 avec des électrocatalyseurs ne comportant pas de métaux rares ou chers (5) ;
  • un milieu électrolytique stable et de pH peu acide pour limiter la corrosion ;
  • un design de cellule avec une répartition des compartiments anodiques et cathodiques optimales pour éviter les pertes ohmiques ;
  • un couplage à un système photovoltaïque robuste et peu coûteux.

C’est ce qu’a réussi un groupe de chercheurs européens coordonné par le Laboratoire de Chimie des Processus Biologiques (LCPB) du Collège de France (*). Après des années de recherche ce groupe a mis au point un système comprenant :

  • une cellule d’électrocatalyse optimisée avec une distance anode-cathode réduite permettant un courant stable sous une tension inférieure à 3V ;
  • des solutions électrolytes peu corrosives comportant des concentrations stabilisantes de bicarbonate ou carbonate de cesium ;
  • des matériaux d’électrodes à base de cuivre où à la cathode sont présentes des couches d’oxyde Cu2O et CuO (6), la dernière montrant une structure dendritique nanostructurée poreuse ;
  • une cellule photovoltaïque originale constituée de pérovskite (7) de type CH3NH3 Pb I3-x Brx fabriquée simplement par multicouches fonctionnelles avec des éléments abondants.

En fonctionnement, sous un flux de gaz CO2, la réduction de ce gaz et l’oxydation de l’eau fournissent des mélanges d’hydrocarbures tels que C2H4, C2H6, et CO, H2 bases de la chimie organique. Le rendement calculé par rapport à CO2 est de 2,3% (plus élevé que les 1% de la photosynthèse naturelle). Ce qui est important à souligner est que ce nouveau procédé mêle au moins deux innovations :

  • une cellule électrocatalytique utilisant un métal abondant et très utilisé le cuivre
  • et un générateur photovoltaïque à base de pérovskite se fabriquant à température ordinaire par sérigraphie de multicouches de matériaux peu coûteux, dont la fabrication industrielle commence.

Bien sûr des études complémentaires de procédés sont à faire car la cellule fonctionne avec du dioxyde de carbone pur alors que dans l’atmosphère (8) il est dilué à 400 ppm. L’augmentation des surfaces de contact ou le captage et la concentration peuvent être des solutions futures pour le développement industriel (9). Alors on peut se mettre à rêver à une économie de carbone en cycle fermé, en imaginant que nos combustibles seraient issus du même dioxyde de carbone produit par leur combustion. Voilà une belle solution à l’épuisement des ressources carbonées fossiles.

Jean-Claude Bernier et Catherine Vialle
Mai 2019

 

Pour en savoir plus
(1) Le CO2, matière première de la vie (Chimie et … Junior)
(2) Que faire du CO2 ? De la chimie ! 1334
(3) Les nouvelles cellules solaires nanocristallines 242
(4) Le soleil comme source d’énergie – le photovoltaïque 268
(5) Énergie électrique et réduction du dioxyde de carbone : quels électrocatalyseurs ? 878
(6) Expérience de réduction de l’oxyde de cuivre II (The reduction of copper oxide) 987
(7) Cristaux, cristallographie et cristallochimie 934
(8) Atmosphère ! Atmosphère ! Alerte ! 1555
(9) Le dioxyde de carbone : enjeux énergétiques et industriels 875


(*) Low-cost high-efficiency system for solar-driven conversion of CO2 to hydrocarbons, Tran Ngoc Huan, Daniel Alves Dalla Corte, Sarah Lamaison, Dilan Karapinar, Lukas Lutz, Nicolas Menguy, Martin Foldyna, Silver-Hamill Turren-Cruz, Anders Hagfeldt, Federico Bella, Marc Fontecave, Victor Mougel, Proceedings of the National Academy of Sciences Mar 2019, 201815412
DOI: 10.1073/pnas.1815412116
 

- Éditorial
mediachimie

Vive le Coradia iLint

Cela fait déjà presque six mois que deux trains à hydrogène Coradia iLint d’Alstom sont exploités commercialement en Allemagne sur la ligne Cuxhaven - Buxtehude de 100 km. La France se réveille à peine et un chargé de
...

Cela fait déjà presque six mois que deux trains à hydrogène Coradia iLint d’Alstom sont exploités commercialement en Allemagne sur la ligne Cuxhaven - Buxtehude de 100 km. La France se réveille à peine et un chargé de mission le député Benoit Simian a remis en novembre un rapport sur l’utilisation de tels trains pour les nombreuses petites lignes non électrifiées (1).

Vous avez tous sans doute emprunté des TER régionaux marchant au gazole avec des moteurs diesel, bruyants et dont les fumées noircissent les quais et halls des gares. Ce nouveau train franco-allemand est plus silencieux et n’émet que de la vapeur d’eau dans ses fumées. Il a été mis au point par le constructeur en 2016 grâce aux innovations menées par deux centres, celui de Salzgitter en Allemagne pour la partie électrique et celui de Tarbes en France pour la partie traction et moteurs.

Quelle est son originalité ? L’énergie électrique lui est fournie par une pile à hydrogène (2) qui transforme ce gaz combiné à l’oxygène de l’air en eau et électricité.

Faisons un peu de chimie (3). Dans la pile à hydrogène à l’anode se produit la demi-réaction H2 → 2 H+ + 2e-. Les électrons passent alors dans le circuit extérieur de charge. Les ions H+ qui ont traversé la membrane (électrolyte solide laissant passer les ions mais bloquant les électrons) rencontrent à la cathode l’oxygène de l’air et la demi-réaction suivante se produit ½ O2 + 2 H+ + 2e- → H2O. Ces réactions sont catalysées par une micro-couche de platine. L’électricité fournie est envoyée dans des batteries ion/lithium (4) qui servent de tampon et alimentent les moteurs électriques de traction du train. Ces moteurs peuvent aussi lors des freinages et ralentissements envoyer du courant pour recharger ces batteries. Un algorithme règle le fonctionnement des piles et des batteries en fonction de l’énergie demandée pour économiser l’hydrogène. Le train peut emporter 300 passagers à des vitesses comprises entre 80 et 140 km/h avec une autonomie d’environ 800 km.

Sur la ligne en Allemagne, près de la gare de Bremervörde se trouve le « ravitaillement » alimenté par des camions-citernes d’Air Products. L’entreprise Linde fournira prochainement une station hydrogène sous la forme d’un grand container d’acier contenant l’hydrogène sous pression. Les trains s’arrêtent le matin pour faire en une dizaine de minutes le plein d’hydrogène qui est stocké dans des réservoirs sur le toit des voitures à côté des piles à hydrogène (5). Ce plein d’environ 200 kg d’hydrogène lui donne une autonomie d’environ 800 km ce qui est suffisant pour faire plusieurs allers et retours et desservir 5 gares par jour sur le trajet. Le Land de Basse-Saxe a déjà commandé 14 Coradia à Alstom qui devraient être livrés dès 2020. Pour les dirigeants allemands c’est une alternative écologique aux diesels car bien moins polluants. Certes pour l’instant ils fonctionnent avec de « l’hydrogène gris » issu du steam craking du gaz ou des hydrocarbures qui dégage du CO2 (6), mais l’objectif est d’avoir dans l’avenir de « l’hydrogène vert » (7) issu de l’électrolyse de l’eau par un courant électrique fourni par des éoliennes par exemple. Un champ de 10 MW pourrait d’après les calculs fournir par jour 2,5 tonnes d’hydrogène pouvant alimenter 12 à 14 trains.

Il est paradoxal que c’est en Allemagne que s’inscrit cette première mondiale alors qu’Alstom est une société française. Nous avons aussi en France le 2e fournisseur d’hydrogène mondial, Air Liquide, et nombre de start-ups performantes dans le domaine du stockage comme McPhy Energy. Toutes les conditions de recherche et de développement sont réunies, encouragées par le plan national de développement de l’hydrogène. Pour rattraper notre retard j’espère que le rapport de Benoit Simian permettra de voir que, plutôt d’électrifier les quelques centaines de voies secondaires, il sera plus économique de développer les Coradia d’Alstom sur le réseau français dès 2022, et que la réglementation sur l’hydrogène carburant évoluera comme en Allemagne. C’est pour le bénéfice de l’emploi, pour garder aussi une longueur d’avance en France pour le ferroviaire et pour lutter contre la concurrence chinoise de CRRC.

Jean-Claude Bernier et Catherine Vialle
Mars 2019

Pour en savoir plus :
(1) Chimie et transport, quel rapport ?
(2) Fonctionnement de la pile à combustible
(3) La chimie et le rail
(4) Piles à combustible et batteries au lithium
(5) Le transport ou le stockage de l’énergie électrique
(6) Et revoilà l’hydrogène
(7) L’hydrogène vert au secours des renouvelables
 

- Éditorial
mediachimie

L’affaire du siècle se trompe-t-elle de cible ?

Vous connaissez sans doute « l’affaire du siècle » dont l’objet est d’attaquer l’État français au motif « d’inaction climatique ». C’est une initiative de quatre ONG, qui a recueilli sous forme de pétitions via les
...

Vous connaissez sans doute « l’affaire du siècle » dont l’objet est d’attaquer l’État français au motif « d’inaction climatique ». C’est une initiative de quatre ONG, qui a recueilli sous forme de pétitions via les réseaux sociaux près de 2 millions de signatures. On peut bien sûr s’étonner qu’on ne se soit pas attaqué d’abord à l’État allemand ou chinois où la production de 1 kWh dans ces pays s’accompagne respectivement de l’émission de 550 g et de 700 g de CO2 alors qu’en France elle n’est que de 60 g (1). Mais d’après l’avocate de ces ONG, cette conduite française vertueuse n’est pas suffisante !

Or si jugement il y a, j’imagine que la justice voudra interroger toutes les parties et les choses risquent de se gâter. Car deux positions s’affronteront et la polémique qui enfle actuellement aux États-Unis et en Europe jusqu'en France sur le rôle du gaz carbonique comme élément essentiel de l’effet de serre et du réchauffement climatique s’y invitera (2). Des publications apparemment sérieuses de spectroscopistes spécialisés dans le rayonnement l’infra-rouge (IR) prétendent montrer que l’émissivité et l’absorption IR sont saturées dès 200 à 300 ppm de CO2 dans l’atmosphère et que le doublement de sa concentration ne modifierait en rien cette saturation. S’ensuit dans la littérature scientifique un débat sur les émissions infra-rouge de la Terre sous forme de courbes de Planck et leur modification dans la gamme d’absorption du CO2 autour de 15 microns. Il en est déduit que les climatologues « réchauffistes » ont eu tort dans leur modèle d’assimiler les molécules de gaz à des corps noirs dont les propriétés sont l’apanage des solides et non des gaz. Et donc que le CO2 ne peut contribuer à l’augmentation de température (3).

Cette thèse de plus en plus partagée est évidemment combattue par les scientifiques du GIEC qui maintenant expliquent que l’atmosphère est constituée de plusieurs couches en fonction de l’altitude, absorbant et réfléchissant l’IR, pour sauver leur modèle (4), et pour certains d’entre eux (pas tous) crucifiant les scientifiques s’opposant à leur thèse. Le problème est que les mesures disponibles des températures de la troposphère par satellites et ballons-sondes montrent qu’elles ne varient que très peu depuis près de 20 ans alors que les émissions de CO2 ont augmenté de plus de 10% (365 ppm en 1998, 408 ppm en 2018). De plus, les résultats des mesures s’écartent de plus en plus des modèles d’extrapolation des températures terrestres du GIEC qui prévoyaient en moyenne 0,4°C sur cette période. Plus grave encore est la fameuse courbe en forme de crosse de Hockey qui a disparu du 5e rapport du GIEC et qui avait affolé le monde politique et médiatique. D’après plusieurs spécialistes statisticiens elle aurait été manipulée par son auteur. Au secours de ce dernier plusieurs climatologues auraient aussi gommé l’optimum climatique de l’époque romaine et du Moyen Âge, en contradiction avec les preuves apportées par les historiens du climat et archéologues dignes de foi (5).

Ces polémiques jettent un trouble quasi tragique sur le modèle alarmiste de « l’urgence climatique » exigeant de la part de l’État des actions immédiates qui auront toutes chances d’avoir peu ou pas d’effet sur un phénomène qui serait du domaine de la variabilité naturelle. Au cours du dernier millénaire, canicules et sécheresses et petits âges glaciaires se sont succédé sans que le CO2 puisse être mis en cause. Avec une population en majorité croyante on entamait alors des processions ou des neuvaines pour que cessent ces phénomènes, aujourd’hui comme la religiosité a disparu, à l’heure des réseaux sociaux on pétitionne  ! « Consensus omnium » !

Et pourtant dans un sujet aussi complexe que le climat, d’une erreur d’interprétation peut résulter un bien, en chimie une réaction loupée, un produit parasite peuvent nous en apprendre plus (6) sur les mécanismes réactionnels. Alors oui pour une meilleure isolation des bâtiments, oui pour une réduction de la consommation des ressources carbonées naturelles, oui pour l’énergie décarbonée, oui pour un changement de paradigme pour les transports. Transférons les milliards consacrés aux élucubrations climatiques à la recherche sur les véhicules électriques, sur les nouveaux réacteurs nucléaires, sur le stockage de l’énergie (7), sur le recyclage des matières de haute technologie, sur les procédés propres… Oui pourquoi pas à l’initiative de J. Jouzel et de P. Larroutourou pour le pacte finance - climat et à la création d’une banque européenne pour financer les recherches sur la transition énergétique, mais de grâce ne parlons plus de climat mais appelons le « pacte finance - préservation des ressources naturelles ».

Jean-Claude Bernier
Février 2019

Pour en savoir plus :
(1) Le challenge de l’électricité verte (Chimie et… junior)
(2) Le changement climatique (Chimie et… junior)
(3) Le changement climatique : question encore ouverte ?
(4) Le changement climatique : perspectives et implications pour le XXIe siècle
(5) Fluctuations climatiques extrêmes et sociétés au cours du dernier millénaire
(6) La maison écologique
(7) Cette « chère » transition énergétique
 

- Éditorial
mediachimie

Avant de traverser la rue, passez donc au Village de la Chimie

Lycéens, étudiants, et même parents, un avenir ça se prépare. Et si vous en êtes convaincus, il y a des coïncidences à ne pas manquer. Alors que Parcours up vient de s’ouvrir fin janvier, les 15 et 16 février prochain se
...

Lycéens, étudiants, et même parents, un avenir ça se prépare. Et si vous en êtes convaincus, il y a des coïncidences à ne pas manquer. Alors que Parcours up vient de s’ouvrir fin janvier, les 15 et 16 février prochain se tient à la Cité des sciences et de l’industrie à Paris le « Village de la chimie des sciences de la nature et de la vie », très grand rassemblement d’entreprises et d’établissements essentiel pour obtenir un large panorama des emplois et métiers de la chimie.

Le village regroupe plus de 30 entreprises, PME, starts-up et grandes industries, ainsi que plus de 30 établissements de formation, universités, grandes écoles et institutions spécialisées.

Ainsi vous pourrez au Village :

  • vous informer auprès des entreprises des métiers, des profils recherchés, des déroulements de carrières dans l’industrie. Des spécialistes ingénieurs et des chargés des ressources humaines répondront à vos questions.
  • vous orienter grâce aux établissements et aux responsables de formation présents qui vous renseigneront sur les filières et parcours du CAP au BTS, IUT, prépas, licences Pro, masters, écoles d’ingénieurs, doctorats, sans oublier l’apprentissage.
  • vous préparer à la recherche d’emploi grâce aux ateliers pour vous entraîner à une utilisation efficace d’internet et des réseaux sociaux.
  • vous exercer à l’entretien d’embauche et pourquoi pas vous initier à la création d’entreprise.

De nombreuses conférences et tables rondes peuvent aussi vous donner un large aperçu des applications novatrices de la chimie pour résoudre les grands défis de l’énergie, de l’environnement et de la santé.

La France a besoin de techniciennes et de techniciens, d’ingénieures et d’ingénieurs, de chercheuses et de chercheurs. La chimie et la biochimie sont les secteurs industriels où la parité homme/femme est presque réalisée. Venez nombreux et nombreuses, les métiers de la chimie vous attendent à la Cité des sciences et de l’industrie les 15 et 16 février.

En complément la tenue d’un stand d’information, le vendredi et le samedi à 14h, Mediachimie anime une conférence sur le thème : La chimie, science de l’innovation, recrute !

Découvrez les formations et les métiers qui embauchent sur le site d’orientation mediachimie.org.

Jean-Claude Bernier et Catherine Vialle
Février 2019

Site du village : http://www.villagedelachimie.org
Planning des conférences : http://www.villagedelachimie.org/inscrivez-vous/planning-des-conferences-et-ateliers/

- Événements
mediachimie

6 février : journée de la mole

La Journée de la mole est une fête officieuse célébrée par les chimistes, dont la date utilise la valeur du nombre d’Avogadro qui définit le nombre de molécules d’un élément dans une mole. Il vaut approximativement
...

La Journée de la mole est une fête officieuse célébrée par les chimistes, dont la date utilise la valeur du nombre d’Avogadro qui définit le nombre de molécules d’un élément dans une mole. Il vaut approximativement 6,02 × 1023.

En Amérique du Nord, elle est célébrée le 23 octobre à 6:02 (6:02 10/23 en prenant la date au format américain). En France plusieurs initiatives ont été lancées en choisissant la date du 6/02 à 10h23.

À cette occasion, Mediachimie vous propose de voir une courte vidéo sur Avogadro. La valeur du nombre d’Avogadro dans cette vidéo est celle en vigueur jusqu’au 19 mai 2019.

Amedeo Avogadro n'a pas eu la reconnaissance qu'il méritait à son époque. Docteur en droit de l'université de Turin, on le retrouve en 1800 à Paris où il travaille à la commission des poids et mesures. Désormais il aime la physique et la mathématique qu'il enseigne au Collège royal. Mais la chimie le rattrape et ce n'est qu'en 1811 qu'il formule sa fameuse hypothèse, contribution qui passera quasi inaperçue.

Homme doux et discret Amedeo vécut jusque 80 ans balloté par les diverses révolutions et changements de régimes italiens, consacrant son temps à son enseignement et sa famille. Il n'a pas recherché la célébrité.

Le "legislatore delle molecole" piémontais modeste devra la reconnaissance à un autre italien Stanislao Cannizzaro qui publie en 1858 son mémoire Sunto di un corso di Filosofia chimica (Résumé d'un cours de philosophie chimique) qui lève la confusion molécules - atomes et permet l'application de l'hypothèse d'Avogadro.

 

En savoir plus sur la définition de la mole

Depuis la 14e Conférence Générale des Poids et Mesures (CGPM) en 1971, la mole est une unité de base du système international SI définie de la façon suivante : « La mole (mol) est la quantité de matière d’un système contenant autant d’entités élémentaires qu’il y a d’atomes dans 0,012 kilogramme de carbone 12. » Sa valeur est mesurée à 6,022 140 857 ×  1023 mol−1.

En novembre 2018 lors de la 26e CGPM, la mole a été redéfinie à partir de la valeur numérique fixée de la constante d’Avogadro. Le nombre d’Avogadro est fixée exactement à 6,022 140 76 ×  1023 mol-1. Cette nouvelle définition entrera en vigueur le 20 mai 2019.

Voir aussi

https://www.lne.fr/fr/comprendre/systeme-international-unites/mole