- Zoom sur...
mediachimie

La vinification

Retrouvez dans un Zoom sur... la vinification les processus, associés aux différentes étapes d’obtention d’un vin : fermentation, nature, inoculation et croissance des levures, importance du facteur température, rôle de
...

Retrouvez dans un Zoom sur... la vinification les processus, associés aux différentes étapes d’obtention d’un vin : fermentation, nature, inoculation et croissance des levures, importance du facteur température, rôle de l’aération, causes des arrêts de fermentation. Des données économiques chiffrées complètent de document.

Une fiche Réaction en un clin d'oeil : De la vigne au verre : tout un art ? vous donnera un éclairage historique sur la vinification.

L’abus d’alcool est dangereux pour la santé, à consommer avec modération.

- Éditorial
mediachimie

Un gaz pas très marrant

Il y a pas mal de curiosités en chimie, les oxydes d’azote (1) en montrent une belle collection. Le monoxyde NO a une activité biologique importante et bénéfique pour notre corps, notamment dans la neurotransmission. Le
...

Il y a pas mal de curiosités en chimie, les oxydes d’azote (1) en montrent une belle collection. Le monoxyde NO a une activité biologique importante et bénéfique pour notre corps, notamment dans la neurotransmission. Le dioxyde d’azote NO2 est beaucoup moins sympathique, il est caractérisé par des vapeurs rousses, irritantes et toxiques. Il se forme à haute température au-dessus de 1000°C par réaction entre l’azote et l’oxygène de l’air dans les brûleurs des centrales thermiques ou dans les moteurs à combustion interne (2). Le protoxyde d’azote N2O serait plus amusant car il est connu sous le nom de gaz hilarant. La description de la molécule N2O oscille entre 2 formes : N≡N+-O- et -N=N+=O.

Découvert par Joseph Priestley en 1772, les propriétés euphorisantes du protoxyde d’azote sont trouvées par Humphry Davy 25 ans après (3), mais c’est un dentiste Horace Wells qui découvre en 1844 qu’il peut être utilisé comme anesthésiant. Après quelques échecs en milieu médical, il fallut les études de William T. G. Morton en anesthésie pour que le protoxyde d’azote après le chloroforme soit utilisé en chirurgie après 1846. S’ensuivirent des progrès importants en médecine chirurgicale, la douleur et l’infection étant alors les deux grandes limites de la chirurgie.

C’est en réalité après 1960 puis 1980 que son usage médical s’est répandu et fut réglementé en associant le protoxyde d’azote à l’oxygène, ce qui élimine le risque d’asphyxie. La médecine utilise donc le MEOPA (mélange équimolaire d’oxygène et de protoxyde d’azote) depuis l’Autorisation de Mise sur le Marché (AMM) en 2001 dans les établissements hospitaliers. L’AFSSAPS (devenue depuis l’ANSM) contrôle et régularise depuis 2010 son utilisation dans les établissements de santé dans le cadre du plan national de la gestion des risques. Pourquoi ? Car comme le disait une publication dans la revue Science « N2O pas de quoi rire ! » (Nitrous oxide: no laughing matter). En effet même si dès le XIXe siècle le protoxyde était utilisé dans les foires pour mettre en joie quelques joyeux lurons, ses propriétés ne sont pas très bénéfiques.

D’abord dans l’atmosphère le protoxyde d’azote est un gaz à effet de serre plus de 250 fois plus absorbant que la même masse de CO2 (4), sa concentration a atteint 330 ppb (parties par milliard) en 2018. Plusieurs articles scientifiques le mettent aussi en cause comme agent destructeur de la couche d’ozone (5) en haute atmosphère. Les principales sources sont l’agriculture avec l’utilisation des engrais azotés et la décomposition du lisier ainsi que l’industrie et les transports, les rejets de ces derniers diminuant, surtout depuis que la dépollution des échappements automobile a fait des progrès (6).

Un nouveau danger qui guette les jeunes adolescents est une nouvelle forme de toxicomanie : le protoxyde d’azote est utilisé sous forme de drogue (7), inhalé pur dans un ballon de baudruche. Il procure un effet euphorisant qui dure environ 5 minutes sans laisser de traces. Cependant une utilisation répétée ou chronique provoque des troubles cardiaques ou neurologiques et des asphyxies ont été signalées. Très peu coûteux, il remplit les cartouches des siphons à chantilly qui sont en vente dans les supermarchés ou sur internet. L’inhalation directe à partir de ces cartouches sous pression peut également provoquer des brûlures et embolies pulmonaires. Un regain de cette mode est constaté depuis 2016/2018 chez les groupes d’étudiants ou d’adolescents. Certains élus, notamment des Hauts de France, souhaitent interdire la vente libre de ces cartouches ménagères.

Pour ma part je souhaiterais que le protoxyde d’azote ne soit pas accessible au grand public mais il pourrait être utilisé à la place du 2-chlorobenzylidène malonitrile (gaz CS) des grenades lacrymogène (8) des forces de l’ordre. Lors des manifestations on assisterait alors à une réconciliation euphorique entre CRS et manifestants au cours d’affrontements sans violences.

Jean-Claude Bernier
Septembre 2019

Pour en savoir plus
(1) Oxydes d'azote, Les produits du jour de la Société chimique de France
(2) La chimie atmosphérique : contexte, récents développements et applications
(3) La découverte des propriétés du gaz hilarant par Humphry Davy (1778 – 1829)
(4) Nom de code : CO2
(5) Chimie, atmosphère, santé et climat, une histoire partagée
(6) La catalyse au service de l'automobile
(7) Outils et techniques de profilage des drogues
(8) Il y a cent ans : la guerre chimique
 

- Événements

Sélection de ressources en SVT en partenariat avec l’APBG

L’Association des Professeurs de Biologie et Géologie (APBG, 4000 adhérents), nouveau partenaire de Mediachimie, a sélectionné parmi les ressources de Mediachimie celles en lien avec les nouveaux programmes de SVT au
...

L’Association des Professeurs de Biologie et Géologie (APBG, 4000 adhérents), nouveau partenaire de Mediachimie, a sélectionné parmi les ressources de Mediachimie celles en lien avec les nouveaux programmes de SVT au Lycée.

Voir la liste des ressources

Ces ressources sont également accessibles depuis l’Espace Enseignants > Espace Lycées

L’APBG regroupe les professeurs enseignant les sciences de la vie et de la Terre en collège et lycée, ainsi que des professeurs des écoles et des universitaires, désirant partager leurs expériences pédagogiques et scientifiques et se tenir informés de la science qui se fait, comme de celle qui s’applique.
En savoir plus sur l'APBG
 

- Éditorial
mediachimie

La chimie peut vous sauver la peau

C’est la période des grandes migrations. Paris et les grandes métropoles vont se vider et l’A7 et l’A10 vont nous montrer leurs périodiques bouchons. Vous allez profiter de la mer, de la montagne, de l’air non pollué
...

C’est la période des grandes migrations. Paris et les grandes métropoles vont se vider et l’A7 et l’A10 vont nous montrer leurs périodiques bouchons. Vous allez profiter de la mer, de la montagne, de l’air non pollué et… du soleil. Comme il risque cette année de se montrer très généreux, faites attention à votre exposition et prenez un certain nombre de précautions. La chimie est là pour vous protéger.

Les rayons du soleil nous envoient une lumière avec un spectre de longueurs d’ondes très large allant de l’infrarouge aux ultraviolets (1). Ce sont ces derniers qui sont les plus dangereux pour la peau. Les UVC (100 à 280 nm) sont arrêtés dans la stratosphère par l’ozone (2) qui joue un rôle de barrière. Les UVB (280 à 315 nm) sont arrêtés par la peau au niveau de l’épiderme. Ils peuvent causer des coups de soleil et favorisent l’apparition de cancers de la peau, mais ils contribuent à la synthèse de la vitamine D. Les UVA (315 à 400 nm), les plus « durs », pénètrent jusqu’au derme et vont accélérer le vieillissement cutané. Ils peuvent provoquer des stress oxydants aigus (3) et entrainer mélanomes et cancers de la peau. 95% des UV qui traversent la couche d’ozone sont des UVA, le reste des UVB.

Pour vous protéger de ces UV on recommande d’appliquer généreusement les crèmes solaires (4) qui comportent des filtres solaires organiques ou minéraux. Plusieurs molécules telles les butyl méthoxydibenzoylméthane ou les bis-ethylhexyloxyphenol methoxyphenyl triazine absorbent en se transformant les UV. D’autres oxydes minéraux comme l’oxyde de titane (TiO2) (5) ou l’oxyde de zinc (ZnO) arrêtent et réfléchissent ces UV en laissant parfois des traces blanches sur la peau qui identifient leur protection.

N’hésitez donc pas à utiliser les crèmes solaires avant de vous exposer au soleil, que ce soit pour une séance farniente, du sport ou une balade. Consultez les indications figurant sur le tube ou le flacon. L’IP ou indice de protection, parfois noté SPF (Sun Protection Factor), va de 6 ou 10 pour une faible protection à 30 ou 50 pour une forte protection ou même 50+. Pour l’indice 10 cela signifie que c’est 1/10 du rayonnement UVB qui est transmis, pour l’indice 50 c’est 1/50 soit 2% des UVB qui atteignent la peau. Pour les UVA on admet que la protection est le tiers de celle des UVB.

Le problème est que la plupart des vacanciers au soleil ne connaissent pas leur taux d’exposition aux UV et donc le moment où il faut se protéger ou renouveler la protection.

C’est encore grâce à la chimie des encres polymères qui permettent de fabriquer des circuits électroniques imprimées (6) que le problème est maintenant en partie résolu. Après le patch « My UV » en 2016 qui, appliqué sur la peau, changeait de couleur en fonction de l’exposition et, après photo via une application sur smartphone (7), donnait le taux d’UV, L’Oréal a lancé l’an passé « UV Sense » un capteur d’UV connecté et sans batterie commercialisé cette année par La Roche-Posay. Ce dispositif de moins de 2 mm d’épaisseur et de 9 mm de diamètre se colle sur l’ongle du pouce. Il comporte un condensateur, des LED, un capteur et un circuit électronique imprimé (PCB – printed circuit board) flexible. Sensible aux UV il peut donner en temps réel l’évolution d’exposition et la garder en mémoire jusqu’à trois mois. Il suffit à l’utilisateur d’indiquer dans l’application disponible sur iOS et Android son phototype (blond aux yeux bleus et carnation claire ou noir aux yeux marron et peau mate) (8) pour recevoir et lire les recommandations personnalisées. Le design de la petite pastille a été particulièrement bien étudié et plait esthétiquement. Selon une étude auprès des consommateurs, plus de 35% d’entre eux appliquent plus souvent la crème solaire ou restent davantage à l’ombre. Si cette innovation permet de bloquer l’augmentation des cas de mélanomes, voilà une bonne contribution au bien-être estival.

Jean-Claude Bernier et Catherine Vialle
Août 2019

Pour en savoir plus
(1) Spectre et composition chimique du soleil (vidéo)
(2) Chimie atmosphérique et climat
(3) L’homéostasie redox de la peau et sa modulation par l’environnement
(4) Un exemple de composé chimique bénéfique à la santé de la peau : la crème solaire
(5) Les enjeux de la vectorisation et de la pénétration transcutanée pour les actifs cosmétiques
(6) La chimie des écrans souples (Chimie et… junior)
(7) Exploser un smartphone (Chimie et… junior)
(8) Les enjeux de la cosmétologie
 

- Événements

51e Olympiades Internationales de la Chimie (IChO 2019)

Le 22 juillet 2019, la Maison de la chimie a accueilli la cérémonie d'ouverture des 51e Olympiades Internationales de la Chimie, à Paris, en présence du ministre de l’Éducation nationale et de la Jeunesse Jean-Michel
...
- Événements

Colloque Chimie et nouvelles thérapies (13 novembre 2019)

Le cycle des Colloques “Chimie &…” se poursuit avec Chimie et nouvelles thérapiesMercredi 13 novembre 2019 Maison de la Chimie, 28 bis rue Saint-Dominique, 75007 Paris Depuis le colloque « Chimie et Santé » organisé par
...

Le cycle des Colloques “Chimie &…” se poursuit avec

Chimie et nouvelles thérapies
Mercredi 13 novembre 2019

Maison de la Chimie, 28 bis rue Saint-Dominique, 75007 Paris

Depuis le colloque « Chimie et Santé » organisé par la Fondation de la Maison de la Chimie en 2010, les progrès dans la connaissance du génome humain, l’essor des biotechnologies et la découverte de nouveaux médicaments issus de la meilleure compréhension du vivant ont été des vecteurs d’innovation médicale qui ont ouvert la voie à des progrès thérapeutiques majeurs.

Les solutions thérapeutiques à venir seront de plus en plus ciblées et permettront une approche intégrée, allant du diagnostic à un suivi personnalisé, en passant par l’adaptation fine du traitement au patient. La médecine de précision est en passe de devenir la composante majeure des thérapies qui bénéficient de nombreuses avancées technologiques dont nous avons déjà présenté des exemples dans les domaines de la biologie de synthèse et des nanotechnologies dans deux récents colloques.

Ces nouvelles façons de traiter les maladies impliquent la coopération entre les disciplines. Des experts chimistes, biologistes et médecins présenteront les résultats de la recherche publique et industrielle dans ces nouveaux domaines d’innovation médicale, pour lesquels la chimie joue un rôle majeur dans la mise au point de médicaments innovants.

Ce colloque est ouvert à un large public, avec une attention particulière aux lycéens et à leurs enseignants. Le niveau des interventions se veut accessible à tous pour permettre un large débat. Nous vous souhaitons une passionnante exploration de ces nouveaux domaines en pleine révolution qui concernent la santé de tous.

Bernard BIGOT
Président de la Fondation internationale de la Maison de la Chimie
et Directeur Général de l’Organisation internationale ITER

 

Les inscriptions, gratuites mais obligatoires, sont ouvertes dès à présent.

Le colloque sera diffusé en direct sur Mediachimie ou sur Youtube.

 

Voir le programme (PDF)

- Éditorial
mediachimie

Un physico-chimiste médaille d’or du CNRS

Thomas Ebbesen, professeur à l’université de Strasbourg, vient de se voir décerner la médaille d’or 2019 du CNRS, l’une des plus prestigieuses récompenses scientifiques françaises. C’est au Japon lorsqu’il travaillait
...

Thomas Ebbesen, professeur à l’université de Strasbourg, vient de se voir décerner la médaille d’or 2019 du CNRS, l’une des plus prestigieuses récompenses scientifiques françaises. C’est au Japon lorsqu’il travaillait pour la société NEC en 1988 qu’il mène des recherches sur les nanomatériaux (1) à base carbone : d’abord les fullerènes (2), ces arrangements d’hexagones de carbone C60 ressemblant à de micro-ballons de football, puis il met au point les nouvelles synthèses des nanotubes de carbone (NTC) (3) et commence des travaux sur le graphène (4). Il met en particulier en évidence un état supraconducteur (5) à 33 K pour un C60 dopé au rubinium.

Ce n’est qu’après 1998 qu’il rejoint Strasbourg à l’Institut de science et d’ingénierie supramoléculaire (ISIS) dirigé alors par J.-M. Lehn. Il poursuit alors en France ses recherches commencées au Japon sur l’interaction lumière–matière (6) et « la transmission extraordinaire » ou comment faire passer de la lumière à travers une plaque métallique. « Physicien de l’impossible », il montre la possibilité de transmission de la lumière à travers de nano-trous du métal, dont la dimension est inférieure à la longueur d’onde du rayonnement. Cette découverte donnera lieu à deux publications fondatrices où il montre l’influence des plasmons de surface, ou capture d’une onde par une surface. Ces publications seront citées des milliers de fois.

Après 2012 Thomas Ebbesen se lance sur un « nouveau terrain de jeu », celui de la chimie polaritronique. S’inspirant des travaux théoriques de Serge Haroche et de Claude Cohen-Tanoudji sur les cavités quantiques, il arrive avec son équipe à changer les propriétés des molécules en les enfermant dans une cavité nanométrique entre deux plaques miroirs et en ajustant très précisément l’espace entre ces plaques dans un environnement électromagnétique - il faut réaliser que cet espace doit être de quelques nanomètres c’est-à-dire 1000 fois plus petit que l’épaisseur d’un cheveu. Il y alors échange mécanique de la molécule en résonance avec la cavité et échanges de photons virtuels. Sont alors créés ce qu’on appelle des états hybrides lumière–matière, dits états « polaritoniques ». Le plus surprenant est alors que l’on peut modifier ou exalter une réaction chimique dans ces conditions, des essais ont été réalisés avec des semi-conducteurs organiques, des enzymes, des systèmes biologiques. C’est une « chimie résonante ». Et plus qu’étonnante car Il y a cinq ans, les éditeurs scientifiques étaient incrédules et pensaient qu’il s’agissait de science-fiction. En 2019, avec les résultats qui s’accumulent, sa découverte suscite de nombreuses études théoriques et expérimentales.

Actuellement, Thomas Ebbesen, après avoir dirigé l’ISIS, est directeur de l’Institut d’études avancées de l’université de Strasbourg (USIAS). Il a déjà reçu de nombreux prix prestigieux dont en 2018 le Grand prix de la Fondation de la maison de la chimie pour ses recherches. Elles récompensent un chercheur imaginatif, aventureux, pluridisciplinaire et éminemment sympathique.

Jean-Claude Bernier et Catherine Vialle
Juillet 2019

Pour en savoir plus
(1) Colloque chimie, nanomatériaux, nanotechnologies 7 novembre 2018
(2) Les fullèrenes
(3) Nanotubes et nanofilaments de carbone
(4) Le graphénomène
(5) Les matériaux stratégiques pour l’énergie
(6) Emettre de la lumière grain à grain : échange quantique d’énergie (vidéo)

 

Image : © C. SCHRÖDER/UNISTRA