- Question du mois
mediachimie

Pourquoi se faire vacciner contre la grippe et la COVID ?

En raison de la probabilité de circulation concomitante cet hiver des virus grippaux et de la Covid-19, la Haute Autorité de Santé (HAS) recommande de coupler les campagnes de vaccination contre la grippe et la Covid-19 à
...

En raison de la probabilité de circulation concomitante cet hiver des virus grippaux et de la Covid-19, la Haute Autorité de Santé (HAS) recommande de coupler les campagnes de vaccination contre la grippe et la Covid-19 à partir du 18 octobre 2022.

Plusieurs ressources ont fait le point sur les vaccins en général et sur le coronavirus (1). Le lecteur pourra s'y reporter. Rappelons que les vaccins dont nous allons parler ici sont des vaccins prophylactiques (2), et non thérapeutiques (3).

1. Le vaccin antigrippal

La grippe est une maladie respiratoire et aiguë qui est de retour chaque automne et ne disparaît qu’au printemps. Appartenant à la famille Influenza, les virus à l’origine de cette maladie sont de type A, B ou C.

Le vaccin contre la grippe est fabriqué à partir de virus inactivés et fragmentés. Il ne contient pas de virus vivant, et ne présente aucun risque de transmettre la grippe. L’organisme, au contact de ces fractions rendues inoffensives, va développer des anticorps, défenses immunitaires spécifiques qui le protégeront face au virus environ 15 jours après la vaccination.

Quelle est la composition du vaccin 2022-2023 ?

Les virus grippaux étant très changeants, il faut adapter chaque année le vaccin aux virus susceptibles de circuler (4) et revacciner chaque année. Le vaccin antigrippal pour l'hiver 2022-2023 cible les virus appartenant aux quatre différentes souches suivantes : un virus de type A/Victoria/2570/2019 (H1N1) ; un virus de type A/Darwin/9/2021 (H3N2) ; un virus de type B/Austria/1359417/2021 ; un virus de type B/Phuket/3073/2013.

On connaît déjà bien les virus H1N1 et H3N2, responsables essentiels de la grippe de 2018 caractérisée par 8 semaines d’épidémie en France et à l’origine de 1,8 million de consultations, de 65 600 passages aux urgences, de 11 000 hospitalisations et de 8100 décès (5).

Comment fabrique-t-on le vaccin contre la grippe ?

Les vaccins vivants atténués sont utilisés depuis 1921 comme le célèbre BCG (6) contre la tuberculose. Depuis une cinquantaine d'années, on fabrique les vaccins à l'aide d'œufs fertilisés. On injecte le virus par un petit trou à l'intérieur de ces œufs qui sont incubés 3 jours à 35°C. Le virus se multipliera à l'intérieur des cellules qui composent l'embryon de poulet. Une nuit à 5°C fait mourir les embryons, puis on récupère et purifie le blanc d'œuf. On tue alors le virus - et les bactéries éventuellement présentes - à l'aide d'un produit chimique (7), puis on purifie ces virus inactivés qui sont ensuite fragmentés (8), ce qui augmente la réponse immunitaire et diminue encore les risques. Le vaccin est alors prêt.

2. Le vaccin contre la COVID-19

Cette année en France, la Haute Autorité de Santé a recommandé des vaccins bivalents (9) qui protègent contre la souche initiale SARS-CoV-2 et son variant Omicron. Ce sont des vaccins à ARNm (10) dirigés contre les protéines de pointe (11) des virus. Les vaccins précédents restent efficaces contre les formes graves, les hospitalisations et les décès, mais les vaccins bivalents sont mieux adaptés aux virus qui circulent actuellement et peuvent éviter l'infection.

Le vaccin à ARNm est-il sans danger ?

La figure 1 montre comment la cellule eucaryote (12) va fabriquer les protéines : une cellule se compose d'un cytoplasme (13) à l'intérieur duquel est le noyau, séparé par une membrane difficile à franchir. À l'intérieur du noyau, l'ADN porteur de l'information génétique va être copié, c'est la réplication ; cet ADN va être reproduit sous forme d'ARN c'est la transcription ; cet ARN va perdre des fragments non utiles, c'est l'épissage qui conduit à l'ARN messager. Ce dernier traverse la membrane pour passer dans le cytoplasme, où il est traduit en protéines.

 

Figure 1.

Pour préparer le vaccin, comme l'ARNm est détruit dès qu'il pénètre dans l'organisme, on enveloppe l'ARNm fabriqué par synthèse (14) et codant pour les fragments de protéine de pointe dans une membrane artificielle (15) qui mime la membrane externe de la cellule. Lors de la vaccination, ce vecteur va pénétrer dans le cytoplasme où il introduit l'ARNm, mais il ne peut pas pénétrer dans le noyau. Il n'y a donc a priori pas de risque de modification du génome.

Mais ce premier vaccin à ARNm, préparé si vite, est-il vraiment sûr ? Il y a plusieurs arguments qui montrent que sa préparation n'a pas été « bâclée » :

  • i) Depuis 1990, une chercheuse hongroise, Katalin Karikó, a proposé d'utiliser l'ARNm dans des buts thérapeutiques (16)
  • ii) Ce nouveau type de vaccin a bénéficié des études de 2003 lors de l'épidémie de SARS CoV-1
  • iii) La synthèse du fragment d'ARN codant pour un fragment de la protéine de pointe a été très rapide, ce qui a accéléré les choses par rapport aux vaccins classiques
  • iv) La circulation très rapide du virus a permis d'obtenir des résultats plus rapidement.


3. Co-vaccination grippe Covid : est-ce sans danger ?

Selon une étude de Santé publique France (17), 25 % des personnes à risque comptent faire les deux vaccins en même temps. Dans un communiqué, l'Assurance maladie rassure : « la co-vaccination est sans danger : les données disponibles indiquent que la co-administration est généralement bien tolérée ». D'ailleurs, lors de la campagne de vaccination contre la grippe 2021-2022 qui était couplée avec celle contre la Covid-19, « aucun signal particulier n’a été identifié ». En cas d'impossibilité ou de refus de recevoir les deux vaccins en même temps, aucun délai n'est à respecter entre deux vaccinations.

Une question assez curieuse se pose : « pourquoi les gens ont-ils plus peur des vaccins que des médicaments ? " Il semblerait que ce soit d'abord la peur de la seringue ! Et le vaccin est une invention récente, du XIXe siècle, alors que l'homme se soigne avec des emplâtres, des tisanes depuis plus de mille ans. Enfin, de tout temps les hommes ont été plus préoccupés par la guérison des maladies que par leur prévention.

Nicole Jeanne Moreau et l’équipe Question du mois


 

(1) Zoom sur les vaccins (02/10/2020) ; Ensemble de ressources et de liens relatifs au coronavirus SARS-CoV-2 et à la pandémie de COVID-19 (mediachimie.org)
(2) Pour prévenir ou atténuer les effets d'une éventuelle infection par un agent pathogène naturel.
(3) Pour soigner ou aider le patient à lutter contre une maladie déjà survenue, par exemple un cancer.
(4) C’est l’Organisation mondiale de la santé (OMS) qui est chargée, en amont, de leur surveillance.
(5) Selon Santé publique France
(6) Bacille de Calmette et Guérin
(7) Formaldéhyde et/ou détergent
(8) Les vaccins à virions fragmentés contiennent des virus inactivés, qui ont été fragmentés au moyen d’un détergent, d’un solvant ou de ces deux substances. Réf: https://www.canada.ca/fr/sante-publique/services/rapports-publications/releve-maladies-transmissibles-canada-rmtc/numero-mensuel/2018-44/numero-6-7-juin-2018/article-2-resume-vaccin-sous-unitaire-vaccin-antigrippal-virion-fragmente.html
(9) Moderna ou Pfizer-BioNTech
(10) ARN messager
(11) Spicule ou spike
(12) Du grec eu, bien et caryos, noyau. Ce sont les cellules de tout être vivant autre que les bactéries.
(13) Du grec cyto, cellule et plasma, forme
(14) Ils sont synthétisés in vitro à l’aide d’une matrice d’ADN et d’une enzyme, l’ARN polymérase. L’ARN est ensuite purifié sur des colonnes de chromatographie, qui profitent des propriétés chimiques (pH ou affinité) pour séparer les composants de la solution et isoler le produit d’intérêt.
(15) Formée de lipides, de phospholipides et de cholestérol
Exemple de l’excipient du vaccin Pfizer :


 source  : wikipedia, domaine public, Lien

(16) Elle rejoint en 2013 BioNTech, un des deux laboratoires, avec Moderna, à l'origine du vaccin.
(17) https://www.has-sante.fr/jcms/p_3288855/fr/covid-19-et-grippe-la-has-precise-les-conditions-d-une-co-administration-des-vaccins

 

 

Crédits. Illustration : MasterTux/Pixabay ; Figure 1 : © N.J. Moreau

- Événements
mediachimie

Colloque Chimie et Intelligence Artificielle - mercredi 8 février 2023

Le cycle des Colloques “Chimie &…” s'enrichit d'un nouvel opus :  Chimie et Intelligence Artificielle  Mercredi 8 février 2023  Maison de la Chimie, 28 bis rue Saint-Dominique, 75007 Paris  Bien que des mouvements sociaux
...

Le cycle des Colloques “Chimie &…” s'enrichit d'un nouvel opus :

 Chimie et Intelligence Artificielle 
 Mercredi 8 février 2023 

Maison de la Chimie, 28 bis rue Saint-Dominique, 75007 Paris 

Bien que des mouvements sociaux sont annoncés par la RATP et la SNCF pour les 7 et 8 février prochain, le colloque Chimie et Intelligence Artificielle est maintenu.

De nos jours, les nouvelles technologies permettent de générer des données et de les stocker dans des supercalculateurs. À l’aide d’algorithmes, on peut les trier et les interpréter plus vite qu’il n’est humainement possible pour prendre des décisions complexes. Le but de l’intelligence artificielle (IA) est de permettre à des ordinateurs de penser et d’agir comme le feraient des humains. De nouvelles puissances et infrastructures de calcul permettent de disposer des masses de données sans précédent, le « Machine Learning » et le « Deep Learning » les interprètent pour des tâches aussi complexes qu’innovantes.

L’intelligence artificielle est un sujet d’actualité dont la mise en application touche tous les domaines de l’industrie, de la recherche et de notre vie quotidienne. Bien que déjà présente dans la R&D, l’IA est encore pratiquement ignorée de la majorité des chimistes, n’apparaissant dans l’enseignement au niveau supérieur que depuis peu alors que tout le monde est convaincu de la place qu’elle est en train de se créer. Nous souhaitons donc présenter dans ce colloque un nouveau domaine en développement non seulement dans la recherche universitaire et industrielle, mais aussi dans l’enseignement indispensable pour préparer l’avenir.

Pour cela nous avons fait appel d’une part, aux experts universitaires et industriels des principaux domaines d’utilisation dans lesquels chimie et IA sont associés, d’autre part, aux enseignants chercheurs des établissements d’enseignement supérieur qui ont mis en place des formations initiales et continues dans cette nouvelle spécialité.

Ce Colloque est ouvert sur inscription à un large public avec une attention particulière aux jeunes et à leurs enseignants. Pour que ce colloque puisse être accessible au plus grand nombre, il sera diffusé sur la chaine You Tube de Mediachimie.

Le niveau se veut accessible à tous pour permettre un large débat.

Danièle Olivier et Jean-Claude Bernier
Co-Présidents du Comité d’Organisation

 

Voir le direct sur Mediachimie ou sur Youtube.

 

En savoir plus

Inscription gratuite et obligatoire : INSCRIPTIONS

 

Retrouvez le quiz "Chimie et intelligence artificielle"

- Question du mois
mediachimie

Noël : la magie des bougies. Comment les bougies nous éclairent-elles ?

Le principe de la bougie, vieux comme le monde, consiste en un corps gras (combustible) et une mèche inflammable. Lorsqu’on enflamme la mèche, la chaleur dégagée fait fondre le corps gras. Ce liquide cireux va alors
...

Le principe de la bougie, vieux comme le monde, consiste en un corps gras (combustible) et une mèche inflammable.

Lorsqu’on enflamme la mèche, la chaleur dégagée fait fondre le corps gras. Ce liquide cireux va alors grimper le long de la mèche par un phénomène appelé capillarité et se vaporiser sous l’action de la chaleur. Les gaz formés brûlent au contact du dioxygène de l’air : c’est la flamme de la bougie.

Cette combustion consomme la cire et le dioxygène et elle dégage de la chaleur. Elle va donc permettre la fonte de la cire restante et fournir en continu l’apport en combustible dans la mèche, ce qui entretient le processus, bien que la mèche se consume peu à peu.

En l’absence d’air (donc de dioxygène) - ou de mèche - la bougie s’éteint.

Les composants des bougies

Historiquement, la mèche était un jonc, il était trempé dans de la graisse fondue animale, suif de bœuf ou de mouton, graisse de cochon… ou cire d’abeille (beaucoup plus coûteuse et essentiellement réservée aux usages religieux) qu'on laissait ensuite durcir.

L’identification au début du XIXe siècle de la stéarine (i) extraite de graisse animale ou végétale et dont l’acide stéarique est issu puis, à la fin de ce siècle de la paraffine solide, issue du pétrole, a permis la production industrielle des bougies, formées avec des mèches en coton ou en chanvre tressé entourées d’une cire pouvant être moulée et solide à température ordinaire. Lors de leur fabrication, les bougies peuvent être colorées, si l’on introduit des pigments, ou parfumées par exemple par des huiles essentielles.

Les températures de fusion varient selon les produits utilisés. La température de fusion de la paraffine se situe entre 52 et 56°C, celle de l’acide stéarique est de 69-70°C et celle de la cire d’abeille se situe entre 62 et 65°C.

De nos jours, les bougies commercialisées sont essentiellement fabriquées à partir de paraffine.

Les constituants chimiques

Les graisses végétales ou animales sont composées de triesters du glycérol et d’acides à très longue chaine carbonée appelés acides gras (ii). Ainsi, la stéarine est le triglycéride de formule C57H110O6) (iii) dont on tire l’acide stéarique de formule CH3-[CH2]16-COOH. C’est l’acide stéarique qui a permis la production à grande échelle de bougies tout au cours du XIXe siècle (iv).

La paraffine est un mélange obtenu en raffinerie à partir de résidus solides du pétrole. Elle est constituée d’alcanes, molécules d’hydrocarbures saturés, de formule brute CnH2n+2, où la valeur de n se situe entre 18 et 32.

La paraffine qui est utilisée dans la production industrielle de bougies est en général complétée par l’apport d’un mélange appelé « acide stéarique technique » composé d’acides palmitique(v)et stéarique, et improprement appelé « stéarine »(vi). Ce mélange permet de rendre la cire plus opaque, plus dure ou encore d’augmenter la durée de combustion de la bougie.

La cire d’abeille est un mélange naturel complexe dont les constituants chimiques ne sont pas tous identifiés. Elle est composée d'environ 15% d'hydrocarbures linéaires à longues chaînes, 71% d'esters (dont 44% de monoesters d'acide gras et d'alcool gras, 12% d'hydroxyesters, 14% de di et triesters et 1% d'esters de stérols), 3% d'acides libres (vii) et 1% d'alcools libres, auxquels s’ajoutent des composés variables selon l’origine de la ruche.

La combustion de la bougie

La combustion complète des substances constituant une bougie conduit à la formation de CO2 et H2O. Mais si elle est incomplète, par manque d’oxygène elle produit aussi du monoxyde de carbone CO et des dépôts de carbone (suie).

De plus, une fois chauffés, la paraffine et les éventuels adjuvants parfumés ou colorés libèrent un peu de substances (acétone, benzène, toluène) toxiques et agressives pour les poumons. La combustion d’une bougie parfumée donne aussi naissance à des particules ultrafines associées à des HAP, hydrocarbures aromatiques polycycliques que l’on retrouve lors d’une combustion incomplète, et dont la toxicité est connue.

S’il y a de la fumée ou de la suie visibles, c’est que la bougie contient des substances polluantes.

La cire d’abeille ne dégage pas de fumée en brûlant ce qui donne des bougies moins polluantes.

Il est donc conseillé d’utiliser les bougies dans un milieu suffisamment aéré pour profiter de la magie qu’elles offrent.

Andrée Harari, Françoise Brénon et l’équipe question du mois

 

 

(i) La stéarine a été découverte par Michel Eugène Chevreul au XIXe siècle lors de ses travaux sur les corps gras entre 1813 et 1823. Voir son traité Recherches chimiques sur les corps gras d’origine animale (sur le site Gallica -BNF)

(ii) Un acide gras est un acide carboxylique dont la chaine carbonée présente de 4 à 36 atomes de carbone.

(iii) La stéarine est le triester formé à partir du glycérol (ou propan-1,2,3-triol) HOH2C–CHOH–CH2OH et de l’acide stéarique CH3-[CH2]16-COOH. Sa formule développée est :

Image illustrative de l’article Tristéarine
Domaine public, Lien

(iv) M. E. Chevreul et J. L. Gay-Lussac avaient entrevu l’innovation issue de leurs travaux d’isolement des acides gras, en particulier de l’acide stéarique, et avaient pris un brevet pour la réalisation de la bougie stéarique au cours des années 1830. Source « Des produits chimiques très recherchés: les acides gras pour la fabrication des bougies. La naissance de la lipochimie industrielle au cours du XIXe siècle », Gérard Emptoz, Culture technique, n° 23 (1991), pp. 33-45.

(v) L’acide palmitique a pour formule CH3(CH2)14COOH

(vi) Voir la définition du dictionnaire Larousse

(vii) Sources "Manuel des corps gras", Technique et Documentation, Lavoisier, Paris, 1992, pages 297 et 306 et Cires et cirages E. Gomez § 2.2.2.
Pratiquement un quart de la cire d'abeille est du palmitate de myricyle C15H31-COO-C30H61 et on trouve également une quantité de l'ordre de 12% de cérotate de myricyle C25H51-COO-C30H61.

 

Pour en savoir plus

[1] Histoire d’une chandelle, de M. Faraday : pages 29 et suivantes (J. Hetzel (Paris) Ed.) (sur le site Gallica - BNF)
[2] Pour les différents parties éclairantes de la flamme, l’article : The candle, the light bulb and the radio, de R. de Hilster, CNPS Proceedings 2017, p. 13

 

Crédits illustration : DR. A. Harari pour Mediachimie

- Éditorial
mediachimie

Plus de gaz… Plus d’engrais ?

La crise européenne sur le gaz naturel (le méthane) et sur l’énergie a ses plus vives répercussions sur l’industrie et notamment sur l’industrie chimique qui est énergivore. En effet, outre les besoins en électricité et
...

La crise européenne sur le gaz naturel (le méthane) et sur l’énergie a ses plus vives répercussions sur l’industrie et notamment sur l’industrie chimique qui est énergivore. En effet, outre les besoins en électricité et en chaleur pour les réactions chimiques industrielles, le gaz n’est pas seulement un carburant énergétique mais aussi une matière première pour des produits essentiels.

Prenons comme exemple la chaine des engrais azotés passant par le dihydrogène, l’ammoniac, l’acide nitrique et enfin les nitrates. En effet depuis la découverte du procédé industriel de synthèse de l’ammoniac dit Haber-Bosch en 1913, les engrais azotés ont permis à l’agriculture de multiplier les rendements agricoles notamment sur le blé et le maïs et aussi d’autres cultures vivrières, par un facteur 5 qui n’a pas été l’un des moindres à contribuer à l’augmentation de la population mondiale après 1920.

La synthèse de l’ammoniac, dont la réaction N2 + 3 H2 = 2 NH3, parait simple, exige hautes pression et température (300 bars ; 500°C), donc consomme de l’énergie électrique pour les compresseurs et de la chaleur pour le réacteur.

Mais il faut aussi préalablement produire le dihydrogène et le diazote ce qui s’accompagne de consommation de méthane et de formation de CO2. En effet le dihydrogène H2 est majoritairement issu de la réaction du méthane sur l’eau à haute température et le diazote N2 est obtenu en éliminant le dioxygène de l’air par combustion du méthane (réaction dont la chaleur est récupérée pour la réaction précédente). Le détail de ces réactions est consultable sur le site Mediachimie (1).

On peut aussi obtenir du dihydrogène par combustion partielle de charbon qui conduit à 1200°C au « syngas » (2) dont on peut séparer l’hydrogène. Ce procédé est notamment utilisé en Chine.

Dans le monde on fabrique près de 100 millions de tonnes de dihydrogène s’accompagnant hélas de l’émission de près de 1 milliard de tonnes de CO2 (3).

La fabrication des engrais azotés nécessite préalablement de transformer une partie de l’ammoniac en acide nitrique puis de faire réagir l’ammoniac avec une solution d’acide nitrique. On obtient du nitrate d’ammonium NH4NO3 pouvant être utilisé en solution ou en granulés (4). Un autre engrais utilisé largement est l’urée CO(NH2)2. On le fabrique industriellement par réaction de l’ammoniac sur CO2 à 180°C et sous pression de 150 bars en 2 étapes :

CO2 + 2 NH3 = NH2COONH4

suivie de NH2COONH4 = CO(NH2)2 + H2O   (5)

La consommation d’engrais dans le monde s’élève à près de 180 millions de tonnes dont environ 120 Mt azotés qui exigent, rien qu’en matière première, 72 Mt de gaz naturel. On estime que rien que la production de 170 Mt d’ammoniac est responsable de 2% des émissions de CO2 mondiales.

Des procédés plus propres ?

C’est alors qu’intervient la recherche de procédés alternatifs « plus propres ». On trouve alors plusieurs couleurs pour NH3 comme pour le dihydrogène (6) :

  • l’ammoniac « gris » par le procédé traditionnel Haber-Bosch issu du méthane ou d’hydrocarbures,
  • l’ammoniac « bleu » avec encore Haber-Bosch mais avec la capture du CO2,
  • l’ammoniac « vert » toujours Haber-Bosch mais avec de l’hydrogène obtenu par électrolyse de l’eau.

Pour l’instant seule une installation en Arabie Saoudite et un projet au Canada sont ou seront capables de fournir et commercialiser de l’ammoniac bleu qui, à cause du transport vers l’Europe, devient un peu gris-bleu !

Les deux plus importants producteurs d’ammoniac européens YARA et BASF penchent vers une solution de décarbonation en utilisant de l’hydrogène produit par des électrolyseurs proches des réacteurs d’ammoniac. Si l’électricité utilisée vient d’éoliennes alors il sera vert, si c’est de l’électricité issue du nucléaire il tendra vers le jaune. En fait techniquement on peut se passer de sources de méthane mais le problème est économique car l’ammoniac « vert » a un prix de revient lié au prix du MWh et est bien plus élevé que le « gris » sauf si le prix du gaz reste anormalement élevé.

La recherche pour des procédés « durables »

Y a-t-il des méthodes « douces » pour obtenir l’ammoniac ? Le principal problème chimique est de casser la molécule de diazote dont la liaison N≡N est particulièrement forte. Plusieurs recherches sont menées pour y parvenir, une équipe américaine a réussi à hydrogéner l’azote de l’air en solution grâce à un complexe hydrocarboné de zirconium. Des chercheurs de Rice University ont réussi par électro catalyse à produire environ 10 g d’ammoniac par heure à partir d’un catalyseur constitué de microcouches 2D de sulfure de molybdène où les atomes de soufre sont partiellement remplacés par du cobalt. Une autre équipe coréenne a simulé la même réaction d’un enzyme nitrogénase que certaines bactéries utilisent pour fabriquer l’ammoniac à partir de l’azote de l’air avec des feuillets de nitrure de Bore BN. C’est la même stratégie qu’a suivi une équipe de Montpellier en s’attaquant aux nitrates dispersés dans l’environnement pour les transformer par électro catalyse en NH3.

Ces réactions ont en commun de ne pas dégager de gaz à effet de serre (CO2) et aussi d’être à l’échelle du laboratoire capable de générer quelques grammes par heure. Il faudra encore des années avant qu’un procédé industriel robuste puisse concurrencer le procédé classique.

L’industrie européenne

Oui l’industrie de l’ammoniac en Europe est vitale. Le cours du gaz qui inférieur à 50 € le MWh en 2020 a dépassé les 300 € au plus fort de la crise en août 2022 pour revenir à des valeurs proches de 100 € pénalise fortement la production d’ammoniac et celle d’engrais azotés. Le nitrate et l’urée ont vu leurs prix multipliés par 3 entre 2021 et 2022 ce qui contraint les agriculteurs à diminuer drastiquement les intrants et même à les supprimer pour les petites exploitations avec des répercussions sur les rendements (7).

Même la chaine des constructeurs automobile est atteinte. Devant le prix du gaz et de l’énergie les chimistes européens ont partiellement arrêtés les unités d’ammoniac et réduit les fabrications d’au moins 30% d’où un manque d’urée pour la dépollution automobile (AdBlue) et industrielle. D’un point de vue plus général, la chimie européenne suivant la déclaration du président de BASF en Allemagne se pose la question de sa survie ou de ses délocalisations si la situation tendue sur l’énergie et le gaz perdure.

Jean-Claude Bernier et Françoise Brénon

 

Pour en savoir plus :
(1) Comment fabriquer des engrais avec de l’air ? La synthèse de l'ammoniac, Françoise Brénon (Réaction en un clin d’œil, Mediachimie.org)
(2) Comment fabriquer de l’essence avec du charbon ? La réaction de Fischer-Tropsch, Jean-Claude Bernier (Réaction en un clin d’œil , Mediachimie.org)
(3) Vision de l’hydrogène pour une énergie décarbonée, conférence et article de Xavier Vigor Colloque Chimie et énergies nouvelles, 10 février 2021
(4) Le nitrate d’ammonium, un engrais dangereux ?, Jean-Claude Bernier (éditorial, Mediachimie.org)
(5) La première synthèse organique, Marika Blondel-Mégrelis (Mediachimie.org)
(6) Qu’est-ce que l’hydrogène « vert » ?, Françoise Brénon (Question du mois, Mediachimie.org)
(7) Agriculture du futur : s’appuyer sur les savoirs et non sur les croyances, Jean-Yves Le Deaut, Colloque Chimie et Agriculture durable, un partenariat en constante évolution scientifique, 10 novembre 2021

 

Crédits : image d'illustration, licence CC0, PxHere

- Événements
mediachimie

La chimie recrute ?

La chimie est partout et emploie des opérateurs, techniciens, ingénieurs et docteurs dans de très nombreux secteurs d’activité, la chimie mais aussi la pharmacie, la cosmétologie, l’énergie, la plasturgie, la métallurgie,
...

La chimie est partout et emploie des opérateurs, techniciens, ingénieurs et docteurs dans de très nombreux secteurs d’activité, la chimie mais aussi la pharmacie, la cosmétologie, l’énergie, la plasturgie, la métallurgie, l’électronique, les matériaux, la protection des cultures et même dans la police scientifique… La chimie se diversifie dans la chimie du végétal, la biomasse, le recyclage, l’environnement, la santé…

Pour en savoir plus, vous pouvez consulter :

En recherche, en développement, en production, en commercial…, les compétences sont et seront encore plus recherchées au cours des prochaines années.

Lycéens et étudiants, vous qui décidez de vos choix futurs, découvrez les domaines d’activité en entreprise, les fonctions ou métiers associés ainsi que des vidéos dans l’espace Métiers.

Pour vous aider à trouver la bonne voie consultez :


Une rubrique « ? Métiers, des réponses à vos questions » complète les informations.
 

- Question du mois
mediachimie

Pourquoi réduire la consommation de sel dans l'alimentation ?

C’est un problème de santé publique et aussi de chimie analytique !  Nous avons besoin de sel (chlorure de sodium de formule NaCl) pour maintenir constant notre équilibre électrolytique : c’est-à-dire les rapports entre
...

C’est un problème de santé publique et aussi de chimie analytique ! 

Nous avons besoin de sel (chlorure de sodium de formule NaCl) pour maintenir constant notre équilibre électrolytique : c’est-à-dire les rapports entre les concentrations des différents ions (sodium, potassium, chlorure, calcium, magnésium, phosphate) et l’eau contenus dans notre organisme. Or on perd du sel dans l’urine et la sueur et c’est pourquoi nous devons consommer du sel. Si le sel est vital pour notre organisme un excédent de sel entraine une augmentation de la pression artérielle conduisant à des maladies cardiovasculaires et des AVC. Il est à signaler que l’organisme a besoin d’un minimum de sel pour bien fonctionner car si nous n’en absorbions pas du tout les effets de toxicité seraient les mêmes que ceux décrits lors d’une trop grande consommation. L’OMS recommande de diminuer la consommation de sel depuis une dizaine d’années pour atteindre un objectif de 30% de baisse en 2025.

Pour réduire la consommation en sel, il faut : i) diminuer la dose journalière qui est située actuellement entre 6,5 et 12,5 g de sel/jour, ii) réduire le taux de sel dans les aliments consommés, iii) réduire l’usage du sel de table, en ne dépassant pas le taux de 1,5 % en masse d’aliment, iv) abaisser l’optimum de préférence au goût en utilisant par exemple des arômes de cacahuète ou des ajouts d’herbes aromatiques (persil, basilic, origan… qui renforcent la perception du sel. Des tests sont actuellement en cours sur l’utilisation des différentes variétés de sel (sel fin, fleur de sel, sel micronisé) [1].

La saveur salée fait partie des cinq saveurs fondamentales dont l’amer, l’acide, le salé, le sucré et l’unami (qui vient du japonais : goût protéine des viandes). Leur carte de répartition n’est pas localisée dans des zones précises de la langue contrairement à une idée répandue jusque dans les années 70 [2]. La saveur salée est perçue par toutes les papilles de la langue par un mécanisme transmembranaire qui déclenche un influx nerveux transmis au cerveau nous permettant d’apprécier cette saveur. Les seuils de détection varient avec l’âge de 0,3 g/L pour les juniors à 0,8 g/L pour les seniors, sans différence observable entre les hommes et les femmes. Mais il n’y a pas que le cation sodium du chlorure de sodium qui est responsable de la saveur salée : l’ion potassium, le lithium (non consommable) et l’ion ammonium participent aussi à cette saveur. Le chlorure d’ammonium est utilisé dans les pays du Nord où les rennes sont domestiqués de cette manière car ils en raffolent !

Disposer de mesures précises de la teneur en sel de nos aliments est donc nécessaire.

Des observations qualitatives de fluorescence ont montré que le sel pénètre peu dans la viande grillée de bœuf mais assez profondément dans la chair du poulet cuit [1] .

Des mesures IRM (imagerie par résonance magnétique) issues de la résonance magnétique nucléaire (RMN) du sodium (23Na), nécessitant d’utiliser des champs magnétiques forts de l’ordre de 4,7 teslas (environ cent mille fois le champ magnétique terrestre !) permettent de doser avec une grande précision la teneur en sodium des aliments [1]. Par exemple on a pu mesurer exactement la quantité de sel dans des jambons après un séchage de plus de six mois (8 g de sel pour 55 g d’eau !) Mais cette méthode permet aussi d’obtenir une cartographie de la répartition du sel à l’intérieur des aliments (sans la destruction de cet aliment). Des carottes cuites dans des solutions classiques de cuisine ont été analysées et la concentration du sel au bord des carottes est égale à 7,2 g/L tandis qu’à l’intérieur de la carotte elle est deux fois plus faible ! Une étude plus fine des formes des spectres montre l’existence d’ions sodium libres mais aussi d’ions sodium liés aux molécules voisines contenues dans l’aliment, ce qui donne des informations sur la relation entre la saveur salée plus ou moins longue en bouche et la nature des aliments !

À noter que l’emploi du glutamate de sodium comme alternative au chlorure de sodium fait encore l’objet actuellement de travaux de recherche car il est responsable des saveurs : salée mais aussi unami !

Jean-Pierre Foulon et l'équipe Question du mois

 


Note : L’IRM du sodium est aussi utilisée avec succès pour doser les ions sodium dans le cerveau humain (travaux de recherche réalisés à l’hôpital de Marseille en 2022 !) permettant des diagnostics médicaux très précieux.

Pour en savoir plus :
[1] Comment réduire le sel dans notre alimentation ?  série de cinq conférences vidéos par H. This, C. Hugol-Gential, J.M. Bonny, T. Thomas-Danguin, J.P. Poulain, en libre accès sur le site de l’Académie de l’agriculture, séance 19/10/2022
[2] Le goût : de la molécule à la saveur, Loïc Briand, in La chimie et les sens (EDP Sciences, 2018) pp. 189-209 ; vidéo et chapitre du Colloque La chimie et les sens (22 février 2017).

 

Crédits : image d'illustration, licence CC0, PxHere

- Question du mois
mediachimie

Pourquoi utiliser de l’ammoniac ou de l’ammoniaque dans des applications domestiques ?

La molécule de formule NH3 appelée ammoniac(i) est un gaz, très soluble dans l’eau. On donne aussi le nom d’« ammoniaque » ou « solutions ammoniacales » à ses solutions aqueuses. La forme gazeuse est présente à l’état
...

La molécule de formule NH3 appelée ammoniac(i) est un gaz, très soluble dans l’eau. On donne aussi le nom d’« ammoniaque » ou « solutions ammoniacales » à ses solutions aqueuses.

La forme gazeuse est présente à l’état naturel lors de la décomposition de substances protéiques. 80% de sa production industrielle par le procédé Haber-Bosch(ii) sert à la synthèse des engrais.

Pour ce qui est des applications domestiques, on trouve la solution aqueuse en magasin de bricolage, dans les rayons de produits ménagers ou sur Internet, avec les informations d’utilisations suivantes « nettoyant, décapant », « dégraisse, détache les tissus, ravive les couleurs », « nettoyer les tapis et moquettes, nettoyer les surfaces vitrées… ». Il existe aussi des mélanges prêts à l’emploi.

En ce qui concerne le nettoyage de l’argenterie, l’utilisation des solutions d’ammoniac est discutable(iii).

La solution d’ammoniac est également une des composantes utilisée pour réaliser des « frisures permanentes » sur cheveux(iv), ou dans des colorations capillaires.

Les noms rencontrés sur les étiquettes du commerce

Ammoniaque alcali 22° baumé ; ammoniaque 13° ; ammoniac 13% ; ammoniaque alcali 13 % ; alcali 13% ; ammoniaque (ou ammoniac) alcali 22° hydroxyde d’ammonium ref alcali en solution à 20% (en poids d’ammoniaque dans l’eau).

Ces noms recouvrent-ils la même chose et quelles sont les significations de toutes ces informations ?

Que se passe-t-il lors de la dissolution de l’ammoniac gazeux dans l’eau ?

Lors de la dissolution du gaz ammoniac dans l’eau il s’établit un équilibre dont l’équation bilan (A) est la suivante :

(A) NH3 (aq) + H2O (l) = NH4+(aq) + OH-(aq)

Mais cet équilibre ne produit qu’une très faible quantité d’ions ammonium NH4+. Ainsi la solution contient très majoritairement des molécules d’ammoniac hydratées. Par exemple, pour 17 g de gaz ammoniac NH3 dissout dans 1 L d’eau cela conduit à l’équilibre à avoir 99,6 % sous forme NH3,aq(v). Il se forme seulement 0,4 % sous forme NH4+ et simultanément la même faible quantité d’ions hydroxyde OH-.


Ainsi écrire que l’ammoniaque (correspondant à l’ammoniac en solution) aurait pour formule chimique NH4OH est donc inexact et source d’erreur(vi). Cette formulation date du XIXe siècle(vii).

La solution aqueuse d’ammoniac est aussi une solution basique en raison de la présence des ions OH-(viii).

Le mot « alcali » a pris plusieurs définitions au cours des siècles. En tant qu’adjectif il signifie que le produit est une base forte et donc que sa solution a concrètement un pH allant de 10 à 14 selon sa concentration(ix), ce qui est le cas de la solution d’ammoniac. En tant que nom, « l’alcali » ou « alcali volatil » est synonyme de solution d’ammoniac. Ce terme est toutefois désuet.

Pourquoi l’ammoniac peut-elle retirer des taches de couleurs ?

L’ammoniac NH3 peut donner des complexes en s’associant aux molécules responsables de la tache et ainsi « l’encapsuler » ou faire passer sous forme ionique un colorant qui sera alors soluble dans l’eau. Son caractère basique participe aussi au processus de dégraissage.

Ces propriétés étaient utilisées dès l’Antiquité ! À Pompéi et dans la Rome antique il existait des ateliers de foulonnerie où l’on nettoyait les vêtements des dignitaires. Le linge était foulé avec les pieds par des esclaves dans des bacs contenant des argiles et de l’urine humaine récoltée dans la ville. En effet l’urine contient de l’urée qui se transforme en ammoniac grâce à une enzyme uréase (naturellement présente dans l’urine) selon :

(NH2)2CO (urée) + H2O → CO2 + 2 NH3


Précautions à prendre dans un usage domestique(x)

En raison de son caractère basique, il est conseillé d’utiliser des gants lors de la manipulation d’une solution aqueuse d’ammoniac et d’éviter le contact avec les yeux et les muqueuses.

L’odeur caractéristique de l’ammoniac ne vous échappera pas ! Au moment de manipuler ce produit il est vivement conseillé d’ouvrir les fenêtres pour aérer la pièce et d’éviter de respirer les vapeurs.

Ne pas stocker ni manipuler le produit près d’une source de chaleur, car NH3 dissous peut facilement redonner de l’ammoniac gazeux s’échappant du flacon.

Ne pas stocker la bouteille d’ammoniac à proximité d’une bouteille d’acide chlorhydrique (éventuellement possédée comme détartrant). En effet les vapeurs de NH3 comme celles de chlorure d’hydrogène (HCl) pouvant s’échapper des flacons donneront des cristaux blancs de chlorure d’ammonium(xi), qui se déposeront sur les bouchons. On peut observer que les grandes surfaces ne respectent pas toujours ces règles de stockage !

Dans diverses circonstances vous pouvez identifier la présence d’ammoniac. Par exemple :

  • L’ammoniac apparait dans des processus de fermentation réalisés dans l’industrie agroalimentaire. Ainsi les caves d’affinage du Comté se distinguent par une forte odeur due à des vapeurs d’ammoniac(xii).
  • Le Hákarl, plat traditionnel de l'Islande obtenu par fermentation de chairs de certains requins, a une odeur très forte due à la transformation in fine de l’urée en ammoniac, comme vu pour les urines grâce à l’action de l’uréase. La chair du poisson passe alors d’un pH 6 à un pH 9.
  • L’émanation de l’ammoniac gazeux a lieu également si on laisse vieillir trop longtemps certains fromages ou certains poissons et est associée de façon générale aux processus de putréfaction.

Pour en savoir plus sur la concentration des solutions vendues

Pour les étiquettes indiquant un pourcentage, il s’agit du pourcentage massique(xiii) correspondant au rapport entre la masse de la quantité d’ammoniac introduite(xiv) dans l’eau sur la masse totale de la solution obtenue. Donc l’information « solution à 13% » signifie que 100 g de solution contient 13 g de NH3.

Qu’est-ce que le degré Baumé ?

Il est étonnant de trouver encore une information en degré Baumé, unité exclue des unités légales françaises depuis 1961. À 20 °C, la correspondance entre la densité et les degrés Baumé (noté B) pour les liquides moins denses que l'eau (densité < 1) est : d = 140 / (B + 130). Cela donne pour la solution d’ammoniac à 22° d = 140/(22+130) = 0.921 et donc une masse volumique(xv) de 0,921 kg/L.

Les étiquettes au laboratoire de chimie

Dans les laboratoires de chimie l’étiquette indique un pourcentage massique, P, une masse volumique ρ en g par litre (g.L-1) et une masse molaire M en g par mole (g.mol-1). Ces 3 données permettent de déterminer la concentration molaire en ammoniac, [NH3,aq], exprimée en mol par litre (mol.L-1) ; la relation à utiliser est C = P* ρ /M où bien sûr la masse molaire de l’ammoniac est M = 17 g.mol-1 et non 35 g.mol-1, comme on le trouve de façon erronée sur certains flacons, sur des sites Internet grand public et même sur la fiche officielle associée à son numéro CAS(xvi) ! Cette masse molaire erronée provient de l’hypothèse fausse que l’ammoniaque aurait pour formule NH4OH(xvii).

Conclusion

Si l’ammoniac est connu depuis l’Antiquité par ses usages qui perdurent et satisfont les consommateurs, son identification ne date que de la fin du XVIIIe siècle et est due à Claude Louis Berthollet(xviii).

Et qu’en est-il des dénominations ammoniac ou ammoniaque et des formules chimiques NH3 ou NH4OH associées ? Cette chronique illustre que la chimie est une science étudiant des phénomènes complexes à modéliser dont l’interprétation ne fait pas nécessairement l’unanimité et évolue en fonction des connaissances.

Lydie Amann et Françoise Brénon et l’équipe question du mois

 

 

(i) du grec Ammoniakon, « de Ammôn », nom grec d'Amon, dieu égyptien, car on extrayait près du temple d’Ammon en Lybie un minerai nommé salmiac, qui libérait ce gaz. Le salmiac contient du chlorure d’ammonium NH4Cl.

(ii) Consulter Comment fabriquer des engrais avec de l'air ? La synthèse de l'ammoniac

(iii) Pour l’argenterie, le noircissement de l’argent étant lié à la formation de sulfure d’argent très stable, l’ammoniac ne suffit pas à le détruire par complexation. Pour en savoir plus :  Nettoyer l’argenterie par « une recette de grand-mère » : comment ça marche ?

(iv) Pour en savoir plus Pourquoi ça frise ou ça défrise ?

(v) Ce calcul résulte de la valeur de la constante d’équilibre


 

On notera que 17 g de NH3 correspond à 1 mol d’ammoniac soit environ la dissolution de 25 L de gaz à température ambiante.

(vi) Voir la bonne définition du Larousse https://www.larousse.fr/dictionnaires/francais/ammoniaque/2936

(vii) On lira avec intérêt cet article du Chemical Education Why We Are all Using a Nonexistent Substance: NH4OH

(viii) L’acidité et la basicité d’une solution aqueuse sont mesurées sur une même échelle par le pH, grandeur reliée à la concentration en ions H+aq par pH = - log[H+aq].

Les concentrations en H+aq et OH-aq étant toujours liées par la relation [H+aq] * [OH-aq] = Cte. On considère qu’une solution est basique si son pH est supérieur à 7 et acide si pH <7.

(ix) En prenant le même exemple que précédemment (cf. note v), le pH de cette solution vaut 11,6.

(x) On peut consulter la fiche de toxicologie de l’ammoniac sur le site de l’INRS ici.

(xi) La réaction mise en jeu est : HCl (gaz) + NH3 (gaz) → NH4Cl (s). À ce sujet consulter l’anecdote historique La chimie contre les mauvaises odeurs.

(xii) La teneur en ammoniac dans l’air y est de l’ordre de 23 ppm (partie par million en volume dans l’air (mL/m3) d’après le CIGC - Comité Interprofessionnel de Gestion du Comté).

(xiii) Pourcentage massique :

(xiv) Compte tenu de l’équilibre (A) très peu déplacé, la masse d’ammoniac introduite est quasiment égale à la masse de NH3(aq) à l’équilibre.

(xv) La masse volumique se calcule par la relation ρ = d*ρ(eau) sachant que ρ(eau) = 1 kg/L

(xvi) Le numéro CAS de la solution aqueuse est : 1336-21-6 et celui du gaz est 7664-41-7.
Il s’agit de son numéro d'enregistrement unique auprès de la banque de données de Chemical Abstracts Service.

(xvii) Exemple : Le chimiste dans son laboratoire prend une bouteille et étudie l’étiquette pour en connaitre les caractéristiques. Il lit par exemple : P = 28%  ρ = 0,90 kg/L  et M = 35,05 g/mol. Une autre bouteille donne les mêmes informations sauf au niveau de la masse molaire M = 17 g/mol.
Or, l’expression de la concentration molaire exprimée en mol /L a pour expression : C = P* ρ /M .
Ainsi, l’application numérique pour la bouteille 1 donne donc C voisine de 7,2 mol. L-1 et pour la bouteille 2 de 15 mol. L-1, le facteur 2 provenant du facteur 2 entre les 2 masses molaires. Pourtant les dosages acido-basiques de ces 2 solutions montrent que chacune des 2 bouteilles a une concentration en ammoniac NH3 voisine de 15 mol/L. L’erreur provient du fait que l’ammoniaque est assimilée à l’hydroxyde d’ammonium NH4OH en solution (d’où M = 14 + 16 + 5 = 35 g.mol-1) ce qui est erroné comme l’a montré l’étude de l’équilibre de dissolution dans lequel l’ammoniac reste essentiellement sous la forme NH3(aq).

(xviii) voir Berthollet et la découverte de la composition de l’ammoniac

 

Crédits illustration : DR. F. Brénon pour Mediachimie

- Événements
mediachimie

Fête de la science 2022

La Fête de la science 2022 se tiendra en France métropolitaine du 7 au 17 octobre et en Outre-mer et à l'international du 10 au 27 novembre sur la thématique du « Réveil climatique ». Mediachimie.org accompagne cette fête
...

La Fête de la science 2022 se tiendra en France métropolitaine du 7 au 17 octobre et en Outre-mer et à l'international du 10 au 27 novembre sur la thématique du « Réveil climatique ». Mediachimie.org accompagne cette fête et vous propose une sélection de ressources en relation avec cette thématique.

Découvrez les vidéos de la série « Des Idées plein la Tech » qui vous invitent dans des laboratoires de centres de recherche et d'entreprises innovantes :

Amusez-vous en testant vos connaissances avec nos QUIZ :

Vous vous posez la question : « Comment la chimie et ses métiers peuvent-ils contribuer à la lutte contre le changement climatique » ? Vous trouverez des réponses dans l’espace métiers :

Découvrez aussi des fiches Grand oral pour le Bac, issues du partenariat Nathan / Mediachimie qui abordent ce sujet :

La Fête de la science, ce sont également des milliers d'animations gratuites, partout en France. Les activités proposées par chaque région de France et d’Outre-mer sont consultables sur le site https://www.fetedelascience.fr/

 

Illustration : Capture écran. Twitter @FeteScience