Les contraintes géopolitiques et le conflit ukrainien ont mis en lumière la dépendance de l’Europe vis-à-vis du gaz russe importé via des gazoducs traversant plusieurs pays à partir des champs d’extraction de la Russie. Plusieurs pays sont directement impactés dont la Hongrie, la Bulgarie et l’Allemagne. La France qui n’a plus de gisement national (1) et a diversifié ses sources est moins concernée. Sa consommation en baisse depuis plusieurs années est cependant de l’ordre de 390 tWh/an dont 37% pour le résidentiel, 25% pour le tertiaire et 33 % pour l’industrie dont l’industrie chimique qui est « gazo-intensive » puisque le gaz dont le méthane est non seulement une source d’énergie mais une matière première, comme le pétrole (2). Les importations hexagonales de gaz se font pour 60% par gazoducs et pour 40% sous forme de gaz naturel liquéfié (GNL) transporté par des méthaniers.
Qu’est -ce qu’un méthanier ?
C’est un navire de conception et de structure adaptées à la matière transportée, soit ici un gaz comportant de 70 à 95% de méthane (CH4) mais liquéfié à basse température – 162°C (3). Six cents fois moins volumineux qu’à l’état gazeux, son transport maritime permet une souplesse d’approvisionnement sur de très grandes distances en variant les sources : Qatar, Algérie, Nigéria, États Unis. Plus souple qu’un gazoduc dont les infrastructures traversent plusieurs pays avec des risques géopolitiques et des blocages comme vécus pour gaz Stream 2, le méthanier peut se fournir dans n’importe quel pays qui dispose de terminaux cryogéniques de liquéfaction et l’acheminer en quelques jours à la vitesse moyenne de 19 nœuds vers les terminaux de gazéification. La France dispose de 4 terminaux : Fos Tonkin et Fos Cavaou (13), Dunkerque (59) et Montoir de Bretagne (44). Un cinquième est en projet au Havre. Ces terminaux permettent d’accueillir chacun de 8 à 13 milliards de m3 annuels.
Quels sont les types de méthaniers ?
De façon générale ils comportent de 4 à 5 cuves isolées thermiquement avec des dispositifs très perfectionnés de détection de fuites. Ils disposent d’une double coque pour qu’en cas d’échouage ou de collision les cuves ne soient pas fissurées et sont prioritaires sur les voies maritimes compte tenu de leur dangerosité.
On en distingue trois types :
- les méthaniers à membrane - soit d’inox (acier inoxydable Fe, Ni, Cr) enveloppant des blocs de mousse de polyuréthanne dont l’enveloppe de 1,2 mm d’épaisseur gaufrée permet d’encaisser les variations de dilatation lors du refroidissement – soit d’invar (Fe64Ni36) ayant un très faible coefficient de dilatation recouvrant en 2 couches de 0,8 mm des caissons isolants en contreplaqué comportant de la perlite ou de la laine de verre (4)
- les méthaniers à sphères – les cuves sont sphériques au nombre de 4 ou 5 en aluminium enfermant un isolant de type polystyrène en double couche. Ils sont reconnaissables grâce à une partie des sphères visibles sur le pont. Ces navires sont moins soumis au ballotage lorsque les cuves ne sont pas remplies et que la mer ou le vent rend la navigation plus difficile.
- les méthaniers prismatiques – les cuves sont directement posées sur la coque intérieure du navire. Elles sont en aluminium avec une seule couche d’isolant. Ils exigent cependant une forte couche d’isolant entre la cuve et la quille pour éviter les fuites à – 162°C qui gèleraient la coque du navire.
Il y a plus de 550 méthaniers en service dans le monde avec en moyenne des capacités de 160 000 m3 de gaz liquéfié. Le plus grand le Rasheeda peut transporter 266 000 m3 de gaz liquéfié (soit 160 millions de Nm3 gaz ou 1,76 tWh). Les méthaniers sont peu polluants car souvent de propulsion diésel aménagé, comme les fuites de gaz sont de l’ordre de 0,15% par jour, le méthane est réinjecté dans les moteurs pour améliorer le rendement énergétique.
Quel chemin pour le GNL ?
Sur les plateformes d’extraction il faut d’abord le désulfurer puis le gaz purifié est liquéfié par cryogénie, stocké dans des réservoirs refroidis puis ensuite chargé dans les cuves du méthanier. Sur les terminaux gaziers le GNL du méthanier est transféré dans des cuves de stockages et peut prendre plusieurs directions ; le transport vers des stations de carburants au moyen de camions citernes réfrigérés, le « regazéifieur »où il est réchauffé puis mis sous pression pour rejoindre le réseau de distribution après avoir été odorisé.
Face à la décision pour les pays européens de diminuer drastiquement leur dépendance au gaz russe, les commandes d’approvisionnement au Moyen-Orient, en Afrique et aux États-Unis (5) se développent. Ce ne sont pas les méthaniers qui feront défaut ce sont plutôt les terminaux gaziers pour accueillir, stocker et gazéifier le GNL qui manqueront. L’investissement pour un port d’accueil et les infrastructures de traitement dépasse le milliard d’euros et prend un à deux ans de construction. Il faut donc s’attendre à une augmentation du prix de l’énergie. Déjà en juin 2021 le prix du GNL en Asie avait eu un coup de chaud et en Europe depuis janvier 2022 l’augmentation en avril approche les 80%.
Oui la politique d’indépendance énergétique coute cher et les économistes montrent que s’y ajoute le prix de la transition écologique c’est la « Greenflation » qui nous atteint durablement.
Jean-Claude Bernier
Mai 2022
Pour en savoir plus
(1) Une stratégie industrielle payante, deJean-Claude Bernier, L’Actualité chimique (2014)
(2) L’extraction du pétrole et du gaz, une animation issue de la série "Les incollables" (CEA)
(3) L’encyclopédie du gaz, un site proposé par la société Air Liquide
(4) Isolation dans l’habitat : la chimie pour ne pas gaspiller de calories, de Jean-Claude Bernier, in La chimie et l’habitat (EDP Sciences 2011)
(5) Gaz de schistes : pour aujourd’hui ou pour demain ?, de Julien Lefebvre, Noël Baffier et Jean-Claude Bernier, une fiche Chimie et…en fiches, cycle 4, Mediachimie.org
Crédit illustration : LNG Tanker Energy Progress at Wickham Point in March 2016 - Ken Hodge – Flickr - Licence CC BY-NC-N 2.0
Le printemps est propice au bricolage et à l’embellissement des habitations. Portails, grilles de jardin, balustrades, garde-corps et autres objets en fer ou acier n’y échappent pas !
Votre pièce métallique extérieure s’est dégradée. Il faut avant tout traitement de prévention et de décoration éliminer la dernière couche de peinture souvent écaillée et cloquée et ôter la rouille par grattage et ponçage, éliminer toute trace de résidus puis dégraisser la surface avec un solvant organique (par exemple le white spirit(i) ou l’acétone(ii)) afin d’avoir un support net et sec.
Remettre alors une simple couche de peinture ne suffit pas si l’on veut augmenter la durée de vie du support.
Qu’est-ce que la rouille ?
Le fer est un métal qui se corrode en présence de l’oxygène de l’air et de l’humidité. La rouille qui se forme a une composition qui évolue au cours du temps et du taux d’humidité. Pour simplifier, on peut dire qu’elle est au final essentiellement formée de composés du fer à son degré oxydation III, FeO(OH) et Fe2O3 hydraté.
Cette couche d’oxydes en raison de sa structure à l’échelle microscopique n’adhère pas à la surface du fer, est perméable à l’air et l’humidité et forme des boursoufflures ; ainsi le métal peut continuer à s’oxyder.
Il est donc nécessaire de protéger le fer ou l’acier. Plusieurs étapes peuvent être nécessaires, successives ou simultanées.
Le décapage chimique = éliminer la rouille
La rouille peut être attaquée par les acides (entités libérant des ions H+)(iii). On ne peut pas utiliser n’importe quel acide à l’échelle du grand public. En effet par exemple il ne faut pas utiliser d’acide chlorhydrique ni sulfurique qui s’ils détruisent bien la couche de rouille attaquent aussi le fer en profondeur en dégageant du dihydrogène. En cas d’usage il est indispensable de se protéger les yeux par des lunettes de laboratoire et les mains avec des gants adaptés et d’effectuer un rinçage.
L’acide oxalique de formule HOOC-COOH est un décapant un peu plus facile à manipuler.
À l’issue d’une telle étape la surface du métal est mise à nu et il ne reste pas trace du produit décapant.
Produit chimique antirouille à la fois curatif et préventif
L’acide phosphorique H3PO4 en est le modèle type. Il peut être directement étalé au pinceau ou à la brosse sur la pièce à traiter. Si celle-ci est petite elle peut être totalement immergée dans cet acide.
Il y a à la fois destruction de la rouille et modification de l’acier à sa surface. En effet, une fois la rouille attaquée par l’acidité de l’acide phosphorique les ions Fe2+ et Fe3+, apparus à la surface de l’acier, se combinent aux ions phosphate pour former des phosphates de fer solides(iv) qui, de par leurs structures, adhèrent à la surface du fer, protégeant ainsi la surface sous-jacente d’une attaque ultérieure par l’oxygène et l’eau et contribuent de fait à diminuer la vitesse de corrosion. On parle de passivation du fer ou d’inhibition à la corrosion ou encore de couche anticorrosion.
Les acides carboxyliques, de formule générique RCOOH, avec un groupe R à longue chaine carbonée (8 à 10 atomes de C par exemple) peuvent jouer le même rôle. On parle d’acide gras. L’ion carboxylate formé RCOO- se combine aussi aux ions Fe3+ pour créer une fine couche protectrice de passivation(v).
Couche d’apprêt
L’apprêt est une couche de peinture primaire destinée à améliorer l'adhérence, l'efficacité de la protection anticorrosion ou à limiter les irrégularités de surface. Une fois étalé, cet apprêt reste sur la pièce traitée. C’est par exemple le cas du produit Rustol ©(vi) « vernis solvanté qui forme un film protecteur » isolant le métal du milieu extérieur.
Les peintures contiennent les pigments(viii) pour répondre à la couleur demandée incorporé à un mélange, à base de résines polymères qui formeront un film après étalement et séchage du solvant. En plus du côté esthétique, ce film joue un rôle d’étanchéité.
Le résines polymères pour peintures métalliques sont à base de composés glycérophtaliques aussi appelés alkydes ou de polyuréthannes(ix). Il existe aussi des résines dites « alkyd-uréthanes »(x). Ces peintures se trouvent soit en phase solvant organique (white spirit) soit aussi depuis les années 2000 pour certaines sous forme d’émulsion en phase aqueuse.
La peinture antirouille « tout-en-un »
Pour simplifier le travail du bricoleur et des professionnels et éviter de déposer d’une part une ou deux couches d’antirouille suivies de la peinture de finition, certaines peintures actuelles pour le fer contiennent à la fois les pigments et les composants antirouille, le tout incorporé au mélange de résines polymères décrites ci-dessus.
Les produits antirouille passivant intégrés au sein de ces peintures, sont pour la plupart à base de dérivés de l’acide phosphorique comme les phosphates de zinc ou d’ammonium(xi). On peut aussi trouver des carboxylates de sodium.
Des progrès considérables dans ces formulations de peinture permettent d’avoir une efficacité de plusieurs années.
Toutefois il faut éviter de rayer ou d’écailler la surface ou de poser longtemps un autre objet métallique comme des supports de jardinière métallique(xii) pour balustrade de balcon. Les déjections d’oiseaux sont aussi une cause de dégradation des peintures.
Si vous achetez une grille de jardin galvanisée, c’est-à-dire que l’objet en fer a été intégralement recouvert d’une fine couche de zinc en usine, sa durée de vie est beaucoup plus grande. Il s’agit là d’un autre mode de protection du fer(xiii). Dans ce cas le métal au contact avec l’extérieur n’est plus du fer mais du zinc. Pour le peindre il faut préalablement étaler ou pulvériser une couche primaire pour acier galvanisé à base de résine époxy pour faciliter l’accrochage de la peinture de finition.
Allez, bon courage et maintenant à vos pinceaux et rouleaux !
Françoise Brénon et l’équipe question du mois
Ballustrade avec rouille. Photo : F. Brénon
(i) Le white spirit est un mélange d’hydrocarbures contenant 8 à 12 atomes de carbone et sans benzène. À l’échelle industrielle le dégraissage des métaux se fait de plus en plus à la vapeur d’eau sèche pour limiter le rejet de vapeurs organiques issues des solvants (COV).
(ii) L’acétone a pour formule H3CCOCH3
(iii) selon par exemple : Fe2O3 + 6H+ = 2 Fe3+ + 3 H2O
(iv) Le phosphate formé en surface avec les ions ferriques est par exemple FePO4, selon la réaction Fe2O3 + 2 H3PO4 → 2 FePO4 + 3 H2O et avec les ions ferreux Fe3(PO4)2, 8 H2O source Techniques de l’Ingénieur § 1.2.2.3. « Traitements de surface des métaux avant peinture. Procédés » Théophile Guéguen (1992)
(v) Selon les conclusions de la thèse (page 167) de Stéphanie Hollner, sur le « Développement de nouveaux traitements de protection à base d’acide carboxylique pour la conservation d’objets en fer du patrimoine culturel » il est établi que « dans le cas des solutions à base d’acide décanoïque ou de décanoate de sodium, le carboxylate de fer formé est constitué par des agrégats de type Fe3O dans l’entité chimique [Fe3O(CnH2n+1COO)6 (H2O)3]+, NO3- , xH2O avec n = 10 »
(vi) La fiche technique du Rustol© est ici (site du fabricant https://www.owatrol.com)
(vii) Pour en savoir plus consultez le Zoom sur les pigments de J.-P. Foulon, Mediachimie.org
(viii) Le film thermodurcissable tridimensionnel résulte de la réaction de polymérisation entre du glycérol et de l’anhydride phtalique
.
(ix) Les polyuréthannes découlent d’une réaction entre un diol (HO-R-OH) et un diisocyanate (OCN-R'-NCO) pour conduire à un polymère de motif répétitif → -(OCONH- R'-NHCOO-R)- . Les chaînes R et R’ peuvent être insaturées permettant une réticulation conduisant à un composé également tridimensionnel. Ces peintures sont parfois vendues sous forme de 2 composants à mélanger avant usage.
(x) Il s'agit d'alkydes modifiés dans lesquels une partie de l'anhydride phtalique est remplacée par un isocyanate tel que le diisocyanate de toluène (TDI). Ils sèchent généralement plus rapidement et présentent une résistance à l'abrasion et une résistance à l'hydrolyse améliorées, mais sont plus chers.
(xi) Phosphate de zinc de formule Zn3(PO4)2 et phosphate d’ammonium de formule (NH4)3PO4. Avec le phosphate de zinc, Il peut se former à la surface du fer des phosphates mixtes de zinc et de fer II passivants.
(xii) Dans ce cas on observe des créations de micro-piles, le fer étant attaqué en certains endroits et parfaitement sain en d’autres.
(xiii) Pour en savoir plus, vous pouvez consulter la partie B de la ressource Corrosion des métaux et protection, David Soissons, Dossier pédagogique Nathan / Mediachimie.org
Des fabricants automobiles qui doivent s’arrêter de produire, des constructeurs immobiliers en panne de châssis de fenêtres, des électriciens avec des délais de conducteurs en cuivre impossibles, des pots catalytiques en panne faute de catalyseurs… la liste des incidents de production dans l’industrie s’allonge et le conflit russo-ukrainien ne va pas arranger les choses.
Les métaux de la transition énergétique
L’objectif de « zéro carbone » en 2050 en Europe accélère le recours aux énergies renouvelables comme l’éolien, ou le photovoltaïque et pour les transports la vente de véhicules électriques.
Si cette stratégie va réduire la dépendance de l’Europe au pétrole elle va sans doute en créer une nouvelle aux matériaux critiques (1). En effet une éolienne offshore utilise près de 20 000 kg/MW de métaux, le cuivre en majorité, mais aussi l’aluminium, l’acier et des métaux plus rares comme le néodyme mêlé au fer et au bore avec des ajouts de dysprosium et de praséodyme pour ses aimants permanents (2). L’éolienne terrestre en contient deux fois moins par MW mais tout de même huit fois plus qu’une centrale thermique au gaz. Les panneaux solaires sont à peu près tous basés sur le silicium qui reste abondant mais contiennent aussi des dopants comme le gallium, le germanium, l’indium et pas mal de kilogrammes de cuivre et d’aluminium. La voiture électrique contient cinq fois plus de métaux critiques que la voiture thermique, dont le cuivre mais aussi des alliages de terres rares (Nd, Dy, Pr) pour ses nombreux moteurs électriques. Il faut aussi compter les batteries lithium-ion qui contiennent du lithium mais aussi du cobalt, du nickel du manganèse (3). S’y ajoutent les circuits électroniques dont les transistors de puissance (LDMOS) ont des circuits imprimés riches en cuivre étain et argent et quelques contacts en or (1%). Sachant que rien qu’en France l’objectif de l’énergie éolienne de 34 GW se traduit en 50 000 t de métaux dont plus de 20 000 t de cuivre /molybdène et 1 500 t de terres rares ! En multipliant par la puissance à installer en Europe, on arrive à des valeurs astronomiques.
Les prévisions des experts
Suivant un scénario visant à rester en dessous des 2°C de réchauffement global en 2100, les projections sont instructives. Le tableau des besoins en 2050 montre qu’il faudrait annuellement multiplier par 4 à 30 les productions annuelles de 2021 !
Métal | aluminium | cuivre | nickel | lithium |
Besoins en Mt | 200 | 80 | 24 | 3 |
Production annuelle en Mt | 64 | 21 | 2,5 | 0,1 |
On découvre que pour atteindre les objectifs de neutralité carbone au cours de la seconde moitié de ce siècle de grandes infrastructures de production, de stockage et de transport de l’énergie doivent être construites or elles affichent une « intensité matière » bien supérieure à celles des technologies conventionnelles utilisant les combustibles fossiles (4). Une étude portant sur les véhicules légers (actuellement 1,2 milliard en circulation) prévoie un doublement d’ici 2050 et majoritairement électriques. Sachant que nos véhicules contiennent déjà 10 à 20 kg de cuivre, les véhicules électriques en contiennent quatre fois plus. Selon les extrapolations il faudra 200 à 400 Mt de cuivre soit 10 à 20 années de production annuelle pour le seul domaine du transport.
C’est pourquoi dans le dernier rapport de Philippe Varin (5) plusieurs métaux stratégiques sont cités comme devenus critiques : le cuivre, le cobalt, le lithium. S’y ajoutent le nickel, l’étain, le tungstène, les trois lanthanides déjà citées (Nd, Dy, Pr) dont la criticité avaient déjà fait l’objet d’alertes de la part des métallurgistes et du BRGM (6).
Un aspect économique et géopolitique
Pour faire face au nouveau business des véhicules électriques, de nombreuses « gigafactories » se créent partout en Europe pour s’affranchir de la concurrence asiatique. Elles engendrent une forte tension sur les marchés des matériaux. Le cuivre atteint 10 000 $ /t, le nickel 43 000 $/t, l’aluminium a battu son record à 3 000 $/t et le lithium a augmenté de 500% en deux ans à 60 000 €/t. En ces domaines la dimension géopolitique intervient et l’accès aux contrats de marchés à moyen ou long terme est très difficile avec des pays dominant le marché. Le cobalt par exemple est fourni à 66% par la République démocratique du Congo, les terres rares par un consortium chinois qui a 90% de la production mondiale, le Chili et le Pérou fournissent 40% du cuivre, l’Australie et le Chili couvrent 60% du marché du lithium. L’Indonésie et les Philippines vendent l’équivalent de 30% du nickel. C’est dire que l’Europe est particulièrement pauvre en ressources minières exploitées. Ceci se retrouve notamment pour la fabrication des packs de batteries pour l’automobile ; l’Europe ne produit que 1% des métaux bruts nécessaires et à peine 8% des matériaux raffinés et graphite pour électrodes et donc est obligée de les acheter en Chine (66%) ou à d’autres pays en Asie (13%).
Quelles solutions pour l’Europe et la France ?
Investir dans les productions minières existantes et rentables au Portugal pour le lithium, en Pologne en Espagne et en Bulgarie pour le cuivre, en Nouvelle Calédonie (France) pour le nickel, relancer la production minière en France et en Europe, le tungstène dans les Pyrénées où la France fut jusqu’en 1988 le 3e producteur mondial, le plomb dans le Massif Central, l’antimoine en Bretagne, où toutes ces mines furent fermées dans les années 1990 faute de rentabilité (7), la fièvre haussière des métaux qui risque de durer devrait permettre de trouver de nouveaux investissements, à condition que l’acceptabilité minière soit meilleure que le rejet des éoliennes ! L’exploitation des ressources géothermales profondes qui peuvent fournir de l’énergie et du lithium séparé des eaux thermales en Alsace et en Allemagne est devenue très rentable (8). Une autre solution est de prendre des parts dans les entreprises minières dans les pays qui disposent de réserves importantes en Afrique, en Australie, en Amérique latine comme l’a fait depuis longtemps la Chine. Encore une autre solution est le recyclage (9), car contrairement aux combustibles fossiles, les métaux primaires ne sont pas perdus et peuvent être réutilisés après usage. C’est largement le cas pour le fer, l’aluminium et le cuivre. Pour les autres métaux présents dans les nouvelles et hautes technologies le potentiel de recyclage est limité par leur concentration dans les produits en fin de vie et le cout en énergie et en procédé pour que les métaux récupérés restent compétitifs par rapport au cout de la production primaire. Les exemples des déchets et équipements électriques et électroniques (DEEE) et des batteries lithium-ion sont illustratifs. On opère souvent par tri puis broyage et pyrométallurgie qui détruit les plastiques et ensuite hydrométallurgie qui sépare les métaux. Pour les premiers, il faut que la concentration des métaux comme l’argent, le cuivre et l’or soit du même ordre que celle des ressources minières pour être rentable. Pour les seconds (les batteries), si le traitement des batteries des smartphones et ordinateurs est économiquement rentable grâce à leur teneur en cobalt, pour celles de l’automobile les teneurs plus faibles en cobalt, où il est souvent remplacé partiellement par le nickel et le manganèse voire par le phosphate de fer, rendent difficile un traitement industriel d’ensemble et sa rentabilité.
Le rapport Varin remis en janvier aux Ministères de la Transition énergétique et de l’Industrie a permis à l’État de prendre des mesures. Un observatoire des métaux critiques va être créé avec le Bureau de recherche géologique et minière (BRGM), un nouveau délégué interministériel pour la sécurisation des approvisionnements sera nommé et plus de 500 M€ seront consacrés à des appels à projets. Deux plateformes consacrées aux recyclages sont d’ores et déjà décidées, l’une à Dunkerque pour les batteries lithium et l’autre à Lacq pour le recyclage des terres rares des aimants permanents (on se rappellera avec douleur qu’en 2016 Solvay avait fermé à la Rochelle l’unité de séparation des terres rares où un savoir-faire plus que cinquantenaire existait !) les temps changent, les industries s’adaptent, les métaux critiques seraient-ils une nouvelle richesse ? La chimie est en première ligne (10).
Jean-Claude Bernier
Mars 2022
Pour en savoir plus :
(1) Ces matériaux si rares pour la transition énergétique, J. Lefebvre, J.-C. Bernier et N. Baffier, série Chimie et… en fiches, Mediachimie.org
(2) Les terres rares, un enjeu global, Y. Dubosc, revue Chimie Paris
(3) Stocker l’énergie pour communiquer in La chimie dans les Technologies de l'Information et de la Communication, collection Chimie et... Junior, EDP Sciences, Fondation de la Maison de la Chimie
(4) Les matériaux stratégiques pour l’énergie, B. Goffé, Colloque chimie et enjeux énergétiques
(5) France 2030 : Le rapport "Varin" sur la sécurisation de l’approvisionnement en matières premières minérales remis au Gouvernement, Site Minéral Info, République Française
(6) Le nouveau tableau de Mendeleïev du World Metal Forum
(7) La France, nouvel Eldorado ? J.-C. Bernier, revue Actualité chimique
(8) Géothermie et batteries : quel rapport ? J.-C. Bernier , éditorial, Mediachimie.org
(9) Imitons la nature pour recycler les métaux,, J. Lefebvre, J.-C. Bernier et N. Baffier, série Chimie et… en fiches, Mediachimie.org
(10) Les chimistes dans les énergies nouvelles face au développement durable F. Brénon et G. Roussel, série Les chimistes dans..., Mediachimie.org
Crédit illustration : Cerro Colorado - Gabri Solera – Flickr - Licence CC BY-NC-ND 2.0
Le grand oral du bac est une épreuve du baccalauréat qui évalue votre capacité à prendre la parole en public de façon claire et convaincante : solidité des connaissances, qualité de l’argumentation et de la démonstration,capacité à argumenter, à relier les savoirs et à convaincre, gestion de la prise de parole.
Vous déterminez deux questions sur lesquelles vous travaillez durant l’année et vous présenterez le jour de l’examen l’une des deux, sélectionnée par le jury (5 minutes) avant d’échanger avec le jury sur la question (10 minutes). Enfin la dernière partie de l’épreuve (5 minutes) est dédiée à votre projet d’orientation.
Les questions que vous devez présenter doivent être en lien avec vos deux spécialités, soit prises isolément, soit abordées de manière transversale. Avant tout, vous cherchez un thème qui doit vraiment vous intéresser et vous questionner. Le plus simple pour réussir à trouver des bons sujets, c'est de les lier à vos projets d'orientation.
Pour réussir ce grand oral, il est aussi nécessaire de vous entraîner et de vous saisir des opportunités de vous exercer à l'oral.
Pour vous aider à vous construire des bases solides, les équipes de Mediachimie se sont associées avec l’éditeur Nathan pour la création de dossiers complets proposant des problématiques en lien avec la chimie. Les différents thèmes abordés dans ces dossiers sont en lien à la fois avec les enseignements de spécialité de terminale et les problématiques actuelles dans lesquelles la chimie joue un rôle primordial.
Retrouvez ici les dossiers Grand Oral.
Nous consommons sans vraiment nous en apercevoir des kilogrammes de métaux. Nos automobiles sont lourdes d’acier et d’aluminium, la structure de nos ponts est riche en acier, nos canettes de coca ou de bière sont des enveloppes fines d’aluminium ou d’acier.
Avec le rebond de l’activité industrielle après la pandémie, les productions des deux principaux métaux sont reparties à la hausse en 2021. 1,95 milliard de tonnes pour l’acier (dont 1 milliard pour la Chine) et 64 millions de tonnes pour l’aluminium (dont 26 pour la Chine). Ces productions s’accompagnent d’émissions de gigatonnes de gaz carbonique (1). Les experts calculent que ces deux industries métallurgiques représentent entre 7 et 9 % des émissions planétaires.
Un peu de chimie
On peut comprendre facilement que la réduction des oxydes, que sont les minerais, par le carbone produit du CO2.
Pour l’acier (2a et 2b) et donc le fer, la réduction se fait dans des hauts fourneaux. Le minerai mélangé au coke dans le haut du fourneau, rencontre en descendant le gaz réducteur CO qui résulte de la réaction entre l’air chaud insufflé par le bas de la cuve à haute température suivant la réaction
2C + O2 → 2CO. Les réductions observées sont :
En dessous de 620°C : 3 Fe2O3 + CO → 2 Fe3O4 + CO2
Entre 620° et 950°C, on observe Fe3O4 + CO → 3 FeO + CO2
Puis au-dessus de 950°C : FeO + CO → Fe + CO2
Au sein du haut fourneau, à haute température, le monoxyde de carbone est régénéré à chaque fois que CO2, produit par les réactions précédentes, rencontre une couche de coke selon l’équilibre, dit de Boudouard, C + CO2 →2 CO.
La fonte, fer liquide ayant dissout un peu de carbone, coule dans le bas de la cuve vers 1800 °C. Les gaz ressortent en haut du haut fourneau et contiennent entre autres du dioxyde de carbone. Finalement, pour une tonne d’acier se dégagent 2,2 tonnes de CO2.
Pour l’aluminium, après traitement préalable du minerai (la bauxite) afin obtenir l’oxyde Al2O3, la réduction finale se passe en milieu fondu. Al2O3 est dissout dans un bain fluoré contenant la cryolithe AlNa3F6 et du fluorure de calcium CaF2. L’électrolyse à 960°C conduit au dépôt d’aluminium sur l’électrode de graphite et la réaction s’écrit 2 Al2O3 + 3 C → 4 Al + 3 CO2.
Le procédé conduit à l’émission d’environ 4 tonnes de CO2 par tonne d’aluminium auxquelles il faut ajouter l’empreinte carbone des 12 à 14 MWh nécessaires à l’électrolyse. On comprend donc dans la perspective de la neutralité carbone en 2050 que la recherche et le développement de procédés émettant moins de CO2 soient d’actualité.
L’acier vert
Plusieurs voies sont ouvertes pour diminuer les rejets de CO2 :
- La réduction directe du minerai (DRI ou Direct Reduction Iron) par des gaz chauds à 900°C, gaz naturel (méthane, CH4) ou hydrogène H2 (3) selon :
Fe2O3 + 3 H2 → 2 Fe + 3 H2O ou Fe2O3 + CH4 → 4 Fe + 2 H2O + CO - Si l’hydrogène est vert (4) ou peu carboné (5) la réduction d’émission est supérieure à 80% et pour le gaz naturel à plus de 50%. Les éponges de DRI sont ensuite fondues et purifiées au four à arc électrique.
- L’injection de gaz ou d’hydrogène dans le haut fourneau ou la réinjection d’un mélange CO + H2 permet de réduire de 20 à 30% les émissions.
- La capture et le stockage du CO2 à la sortie du haut fourneau (CCUS ou Carbon Capture Utilization and Storage) permet un gain de 63% sur les émissions.
- Ou mieux encore convertir les gaz sidérurgiques CO et CO2 en éthanol par bio transformation.
De nombreux projets voient le jour en Europe, ArcelorMittal compte investir 10 Mrds € d’ici 2035 pour réduire d’au moins 30% son empreinte carbone. Déjà le consortium Hybrit a fourni au constructeur Volvo en Suède 25 tonnes d’acier vert par réduction directe (DRI) de minerai fourni par le minier LKAB et de l’hydrogène fourni par hydroélectricité de Vattenfall. La France n’est pas mal placée avec l’association Arcelor-Air liquide et le nucléaire pour produire l’hydrogène bas carbone. Il n’en reste pas moins que les volets énergétique et financier sont de vrais casse-têtes. On estime que la décarbonatation du secteur exigera plus de 50 Mrds€ d’investissement et près de 400 TWh d’électricité renouvelable dont 250 pour produire 6,5 millions de tonnes d’hydrogène. Devant cette énorme défi les sidérurgistes rappellent qu’ils sont déjà les champions de l’acier vert puisque plus de 45 % des ferrailles sont recyclées dans les fours à arc électrique, qui certes consomment du carbone, mais n’émettent que 0,3 à 0,6 tonne de CO2 au lieu de 2,2 tonnes pour l’acier brut.
L’aluminium vert
Pour la France Péchiney a été historiquement le berceau de la production (6a et 6b) et (7) avec des cuves d’électrolyse dont il a été le leader pendant longtemps et une production d’aluminium dans les vallées alpines et pyrénéennes profitant de l’électricité issue des barrages hydrauliques de montagne ce qui « verdissait » sa production avant l’heure. Le procédé Hall-Héroult, malgré les progrès sur le rendement électrique atteignant près de 95% sur les dernières cuves C 60, arrive dans ses ultimes années car même avec un mix électrique français favorable on émet 3,5 t de CO2, par tonne d’aluminium, auquel il faut ajouter l’énergie du procédé Bayer pour obtenir l’alumine à partir de la bauxite (7). Dès la fin des années 90, le centre de recherches de Voreppe près de Grenoble se lançait dans l’étude d’électrodes inertes pour remplacer celles en carbone, d’abord métalliques puis céramiques non attaquables dans les bains fluorés (8). Après le rachat de Pechiney par Alcan puis Rio Tinto ces études se sont poursuivies et viennent d’aboutir avec une coentreprise ELYSIS entre Alcoa et Rio Tinto à la construction de cuves prototypes avec des cathodes en cermet comportant une ferrite de nickel substituée capable sous une tension de quelques volts et une intensité de 450 kA, de fournir un aluminium sans carbone. En effet, en l’absence d’électrode en graphite, au sein de l’électrolyseur et en milieu cryolithique fluoré, la réaction est alors Al2O3 → 2 Al + 3/2 O2. De plus, le courant électrique provient des centrales hydrauliques canadiennes, ce qui est une véritable révolution technologique.
Ici encore n’oublions pas que le recyclage de l’aluminium (9) est très important puisque l’aluminium de deuxième fusion représente près de 60% de la production en France en émettant 3 à 10 fois moins de CO2 que l’aluminium primaire et mérite le label « vert ».
Ce recyclage est d’autant plus nécessaire que le coup d’État en Guinée (2e producteur mondial de bauxite après l’Australie) menace l’approvisionnement en bauxite et que la Chine a également nettement diminué sa production en arrêtant un certain nombre de centrales électriques au charbon et en confinant, cause pandémie, une partie de la province chinoise produisant 20 % du métal. Le cours de l’aluminium a ainsi dépassé les 3000 $ /t, son record.
Vite à vos poubelles de couleur pour le tri des canettes et capsules…
Jean-Claude Bernier et Françoise Brénon
Février 2022
Pour en savoir plus
(1) Le dioxyde de carbone, matière première de la vie (dossier pédagogique Nathan / Mediachimie)
(2) (a) La recherche de la composition de l’acier à la fin du XVIIIe siècle ; (b) Aciers sur le site L’Élémentarium
(3) L’hydrogène, une source d’énergie pour le futur (Chimie et… en fiches, Mediachimie.org)
(4) Qu’est-ce que l’hydrogène vert ? (question du mois, Mediachimie.org)
(5) Zoom sur les derniers résultats de la production d’hydrogène « décarboné » (Mediachimie.org)
(6) (a) Les débuts de l’industrie de l’aluminium et (b) Aluminium sur le site L’Élémentarium
(7) Comment faire des casseroles avec la bauxite : l’électrolyse (Réaction en un clin d’œil, Mediachimie.org)
(8) L’électrolyse et les applications industrielles (dossier pédagogique Nathan / Mediachimie)
(9) Recyclage et valorisation des déchets Revue Chimie Paris n°340
Source illustration : PxHere, licence CC0
Si vous vous n’avez pas eu l’opportunité de suivre en direct le colloque Chimie et Notre-Dame le 9 février 2022, vous pouvez en retrouver l’intégralité en différé sur la page Youtube de Mediachimie.
La captation des conférences sera par la suite disponible en ligne et leur mise à disposition sera indiquée sur la page d'accueil de Mediachimie.
En savoir plus sur le colloque
Conception graphique affiche : CB Defretin | Images : © Renato SALERI / MAP / Chantier Scientifique Notre-Dame de Paris / Ministère de la culture / CNRS – © Cyril FRESILLON / IRAMAT / NIMBE / ArScAn / CEA / Chantier Scientifique Notre-Dame de Paris / Ministère de la culture / CNRS – © V. ABERGEL/A. GROS/MAP/MIS/Vassar College/A-BIME/Chantier Scientifique Notre-Dame de Paris/Ministère de la culture/CNRS – © V. ABERGEL/L. DE LUCA/MAP/SRA-DRAC/AGP/MIS/Chantier Scientifique Notre-Dame de Paris/Ministère de la culture/CNRS – © Cyril FRESILLON / AASPE / CNRS Photothèque – © Kévin JACQUOT / MAP / Chantier Scientifique Notre-Dame de Paris / Ministère de la culture / CNRS – © V. ABERGEL/L. DE LUCA/MAP/SRA-DRAC/AGP/Vassar College/MIS/Chantier Scientifique Notre-Dame de Paris/Ministère de la culture/CNRS
Dans quelques semaines, l’Europe devra confirmer la proposition de la Commission européenne d’ajouter à titre transitoire le nucléaire et le gaz naturel sur la liste des énergies « vertes » (1) en raison de « leur potentiel à la décarbonisation de l’économie ». Cette prise de position d’introduire ces deux sources d’énergie dans la taxinomie verte comme apportant une contribution substantielle à l’atténuation du changement climatique leur ouvre l’accès à des subventions et de meilleures conditions de financements grâce à des aides publiques et européennes.
Cette annonce, qui en a surpris plus d’un, est due à une réflexion réaliste d’experts sur la difficulté d’atteindre l’objectif européen de zéro émission de CO2 en 2050 (2). En effet, même si le nucléaire est un peu moins vertueux que l’hydraulique, les émissions de CO2 par l’énergie nucléaire et par les renouvelables sont très comparables (voir tableau).
Source | Charbon | Fioul | Gaz | Photvoltaïque | Géothermie | Éolien | Nucléaire | Hydraulique |
masse / g de CO2, par KWh | 1060 | 730 | 418 | 55 | 45 | 7 | 6 | 5,7 |
Tableau : Émissions de CO2 en grammes par KWh suivant les filières de production*
*source : base carbone ADEME –émissions directes et indirectes à la production
Les raisons d’une évolution
On voit donc que le lobby français, bien appuyé par les laboratoires des climatologues du CEA et soutenu par au moins 8 pays riches en centrales à charbon a réussi à vaincre les réserves émises par 3 ou 4 pays opposés au nucléaire. Le paradoxe est cependant l’accord de l’Allemagne qui en 2022 met fin à ses derniers réacteurs nucléaires, accord obtenu à la condition d’introduire, à côté du nucléaire, le gaz naturel puisqu’outre-Rhin la cinquantaine de centrales au charbon (3) doivent être remplacées par des centrales au gaz et encore plus de centrales éoliennes ou solaires d’ici 2050.
Réfléchissons aux facteurs divers, technologiques, physiques et économiques qui ont pu peser sur cette décision :
- La promesse ou même la nécessité de ne plus avoir recours au charbon pour plusieurs pays notamment dans l’Est de l’Europe et donc l’obligation de remplacer les centrales thermiques au charbon par des réacteurs nucléaires ou des centrales au gaz, même si ces dernières accentuent leur dépendance d’approvisionnement à leur grand voisin russe.
- La baisse de la production d’électricité d’origine renouvelable en Allemagne en 2021 malgré les nouvelles installations d’éoliennes et de parc photovoltaïques. En effet on observe une baisse de près de 10% de part du renouvelable dans le mix électrique passant de 45,3% en 2020 à 42% en 2021. Cette baisse est attribuée aux conditions météorologiques faisant douter les partisans du tout renouvelable (4).
- Une évidence physique, la concentration énergétique de l’uranium. Quand 1 gramme d’uranium enrichi à 4% en 235U libère par fission une énergie de 2,9 109 joules soit 70 fois plus que 1 kg de fioul il est clair que la réserve d’énergie de la matière première du nucléaire (5) est super intéressante. Prenons quelques exemples comparatifs. Une éolienne de 3MW (les plus courantes) avec un taux de charge de 25% fournit par an 6,6 106 KWh, alors qu’il suffit d’environ 8 kg d’uranium pour la même production. Un réacteur nucléaire de 900 MW peut fournir 12 TWh/an, pour cette production il faudrait alors 1800 éoliennes. Quand on sait qu’en France leur acceptabilité est de plus en plus contestée, on conçoit qu’une réflexion réaliste sur la concentration d’énergie comparée aux sources diffuses soit en cours (6).
La situation en France
La France a toutes les raisons pour relancer un programme nucléaire. Bien que disposant de 54 réacteurs la situation d’EDF n’est pas très brillante plusieurs sont en arrêt pour grand carénage et près du quart d’entre eux vont devoir être soumis à examen des circuits secondaires pour suspicions de corrosion. La production nucléaire a représenté environ 318 TWh soit 67% des 475 TWh de l’électricité en 2021. La prévision de construire plusieurs EPR 2 est évoquée ainsi que la prolongation possible de la durée d’utilisation de certains réacteurs (jusqu’à 60 ans de service). RTE après plusieurs années de larges concertations a remis au gouvernement un « rapport sur les futurs énergétiques 2050 ». Plusieurs scénarios sont évoqués. Car la demande d’électricité va augmenter si on limite ou supprime le recours aux ressources fossiles pour la neutralité carbone. En 2050 si la réindustrialisation nationale grâce au plan de relance se poursuit, le nombre de véhicules électriques se chiffrera à plusieurs dizaines de millions (7) et la conversion à l’hydrogène exigera de nombreux électrolyseurs (8), les experts extrapolent en 2050 des consommations entre 645 et 750 TWh. En prenant en compte un scenario dit de sobriété avec la multiplication du télétravail, l’isolation renforcée des bâtiments, moins de voyages et déplacements, etc…, ce qui n’est pas un retour à la bougie mais un changement profond de nos habitudes, on aboutit à un bilan médian tout de même de l’ordre de 600 TWh. C’est donc que la neutralité carbone passe par un recours à un mix renouvelable – nucléaire d’autant que parmi les solutions modélisées le recours à un mix où le nucléaire est de l’ordre de 50% de la production électrique coûte 18 milliards de moins que le tout renouvelable.
La recherche et le développement technologique
Cela implique cependant que la France renoue avec son leadership des années 70 en la matière en améliorant la technologie des EPR2 à la lueur des défauts constatés à Flamanville et Hinkley Point et la standardisation des éléments et en accélérant les investissements pour le SMR (Small Modular Reactor) français Nuward, de 2 fois 170 MW, dérivé des réacteurs navals embarqués, avec une technologie d’eau pressurisée que l’on maîtrise bien et la possibilité de le proposer en remplacement des centrales thermiques européennes en utilisant le même réseau de distribution électrique. N’est-il pas trop tard pour « réinventer notre industrie nucléaire » prônent certains Cassandre ? Chinois, Américains et Russes ont déjà des modèles commercialisables et aussi des réacteurs à neutrons rapides prêts à se connecter au réseau alors que des errements politiques depuis les années 80 ont réduit à néant notre avance acquise sur « Phénix » et plus récemment sur « Astrid ». Une nouvelle prise de conscience de nos qualités en recherche et en technologie et « l’urgence climatique » divine surprise, peuvent relancer la filière.
Jean-Claude Bernier
Janvier 2022
Pour en savoir plus
(1) Le challenge de l'électricité verte La chimie, l'énergie et le climat (collection Chimie et junior)
(2) Énergie du futur et préservation des ressources Fiche Chimie et… en fiches (Mediachimie.org)
(3) Faudra-t-il retourner au charbon ? Jean-Claude Bernier, L'Actualité chimique (avril 2010)
(4) Électricité 100% renouvelable : une utopie ? Fiche Chimie et… en fiches (Mediachimie.org)
(5) De l’uranium à l’énergie nucléaire Les incollables (vidéo CEA)
(6) Vitesse de déploiement et acceptabilité des nouvelles technologies dans le domaine des énergies de Grégory De Temmerman, Colloque Chimie et énergie nouvelles, février 2021
(7) Nouveaux véhicules thermiques et électriques : quel impact sur l’environnement ? de Jean-Claude Bernier, Colloque Chimie et énergie nouvelles, février 2021
(8) Qu’est-ce que l’hydrogène vert ? de Françoise Brénon, Question du mois (Mediachimie.org)
Crédit illustration : Jeanne Menjoulet – Flickr - Licence CC BY 2.0
Le cycle des Colloques “Chimie &…” s'enrichit d'un nouvel opus :
Chimie et Notre-Dame : La science au service d'une résurrection
Mercredi 9 février 2022
Maison de la Chimie, 28 bis rue Saint-Dominique, 75007 Paris
Après l’incendie de Notre-Dame de Paris qui, en 2019, nous a tous bouleversés, le Ministère de la Culture et le CNRS se sont mobilisés au côté de l’Établissement public chargé de la conservation et de la restauration de la cathédrale Notre-Dame de Paris créé par l’État et se sont associés dans le cadre d’un grand chantier scientifique pour mettre les compétences et les connaissances des chercheurs d’une cinquantaine de leurs laboratoires au service de la « résurrection » de l’édifice et de ses œuvres d’art. À cette occasion, ces chercheurs se sont aussi donné pour objectif le renouvellement des connaissances sur l’édifice et son histoire.
La chimie est présente aussi bien sur le chantier de restauration que dans ce programme de recherche et d’innovation qui associe archéologues, historiens de l’art, chimistes, physiciens et informaticiens, aux architectes et compagnons présents sur le site.
La Fondation de la Maison de la Chimie a souhaité faire le point sur ce que les sciences de la chimie ont et pourront apporter dans le programme de restauration de la cathé-drale et plus généralement via des innovations dans le domaine des matériaux du patrimoine. Le responsable et les coordinateurs du programme nous ont fait l’honneur non seulement d’intervenir comme conférenciers, mais aussi de nous aider dans le choix des experts pour réaliser cet ambitieux objectif. Nous les en remercions vivement. La vue de l’incendie de Notre-Dame de Paris et son triste bilan ont profondément touché les citoyen de tous âges dans le monde entier.
Ce colloque, qui vise à apporter des informations précises sur le rôle possible des sciences « chimiques » dans la réparation de ce terrible événement et comment la chimie peut contribuer à lui redonner vie, est ouvert à tous les publics, avec une attention particulière aux jeunes et au monde éducatif. Le niveau des interventions se veut accessible à tous.
Bernard Bigot
Président de la Fondation internationale de la Maison de la Chimie
et Directeur Général de l’Organisation internationale ITER
Aller vers la page : Diffusion en direct
Information :
L’accès au colloque est gratuit mais pour participer, l’inscription est obligatoire et se fait uniquement en ligne.
Nous vous informons que pour entrer dans la Maison de la Chimie, vous devrez être en possession d’un Pass Sanitaire ou d’un justificatif de Test antigénique/PCR de moins de 24 heures.
Par ailleurs, le port du masque sera obligatoire dans toute l’enceinte de la Maison de la Chimie.
Le colloque sera également retransmis en direct tout au long de la journée sur la chaîne YouTube de notre médiathèque mediachimie.org pour permettre la participation du plus grand nombre.
La fenêtre qui donnera accès au streaming ne sera ouverte que le jour du colloque.
SI VOUS SOUHAITEZ SUIVRE LE COLLOQUE A DISTANCE, MERCI DE NE PAS VOUS INSCRIRE.
Le déjeuner, compris dans l’inscription, est gratuit mais sous réserve des places disponibles (même si réservé lors de l’inscription), les scolaires étant prioritaires.
Les enseignants souhaitant venir au colloque accompagnés de leur classe sont priés de bien vouloir contacter le secrétariat des inscriptions : p.bridou-buffet@maisondelachimie.com.
Intervenants :
- Bernard BIGOT, Président de la Fondation internationale de la Maison de la Chimie et Antoine PETIT, Président-Directeur Général du CNRS — Introduction
- Sophie AYRAULT, Directrice de Recherches au CEA, Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Université Paris Saclay — Tracer les plombs de Notre-Dame de Paris par leur signature isotopique et élémentaire.
- Richard BOYER, Directeur Général SOCRA — La restauration des statues en cuivre de la flèche de la cathédrale Notre-Dame de Paris.
- Livio de LUCA - Directeur de l'UMR Modèles et simulations pour l’Architecture et le Patrimoine (MAP), Directeur de recherche au CNRS — Un écosystème numérique pour l’analyse et la mémorisation multidimensionnelle du chantier scientifique Notre-Dame.
- Philippe DILLMANN, Directeur de Recherche - CNRS — Matériaux du patrimoine, compréhension du passé, prévision du futur ; quelques exemples.
- Alexa DUFRAISSE, Chargée de recherche au CNRS, UMR 7209 Archéozologie, archéobotanique : Sociétés, Pratiques et Environnements (ASSPE), CNRS/MNHN, Paris — Mémoire du bois : apport de la chimie à la connaissance de la charpente carbonisée de Notre-Dame de Paris.
- Rémi FROMONT, ACMH - Covalence Architectes et Pascal PRUNET, Architecte en chef des Monuments Historiques — Notre-Dame de Paris, matériaux et construction.
- Général d’armée Jean-Louis GEORGELIN | représentant spécial du Président de la République et président de l’établissement public chargé de la conservation et de la restauration de la cathédrale Notre-Dame de Paris — Le chantier de Notre-Dame de Paris : état et perspectives
- Julien Le BRAS, Président Directeur Général Groupe Le Bras Frère — Charpente de sécurisation des arcs boutants et des voûtes.
- Maxime L’HERITIER, Maître de conférences en histoire médiévale, Université Paris 8, ArScAn CNRS UMR 7041 — L'apport des analyses chimiques à la connaissance des armatures de fer de Notre-Dame de Paris.
- Pascal LIEVAUX - Conservateur général du patrimoine, délégation à l'inspection, à la recherche et à l'innovation, direction générale des Patrimoines et de l'Architecture et Aline MAGNIEN - Conservatrice générale du patrimoine, Directrice du Laboratoire de Recherche des Monuments historiques, Ministère de la Culture et de la Communication — De la chimie des matériaux à l’alchimie des équipes.
- Claudine LOISEL, Ingénieure de recherche, responsable du pôle scientifique Vitrail, Laboratoire de recherche des monuments historiques (LRMH) — La conservation-restauration et la recherche sur les vitraux de la cathédrale Notre-Dame de Paris.
- Witold NOWIK, Chimiste, Ingénieur de recherche, responsable du pôle Peinture murale et polychromie, Laboratoire de Recherche des Monuments Historiques. et Marie PARANT, Restauratrice de peintures murales, indépendante — Conservation-restauration de peintures polluées par dépôt d’aérosols de plomb.
- Véronique VERGES-BELMIN, Géologue, Ingénieure de recherche, responsable du pôle scientifique Pierre, Laboratoire de recherche des monuments historiques (LRMH) — Conservation des maçonneries endommagées par les sels solubles suite à l'incendie de Notre-Dame de Paris en 2019.
Conception graphique : CB Defretin | Images : © Renato SALERI / MAP / Chantier Scientifique Notre-Dame de Paris / Ministère de la culture / CNRS – © Cyril FRESILLON / IRAMAT / NIMBE / ArScAn / CEA / Chantier Scientifique Notre-Dame de Paris / Ministère de la culture / CNRS – © V. ABERGEL/A. GROS/MAP/MIS/Vassar College/A-BIME/Chantier Scientifique Notre-Dame de Paris/Ministère de la culture/CNRS – © V. ABERGEL/L. DE LUCA/MAP/SRA-DRAC/AGP/MIS/Chantier Scientifique Notre-Dame de Paris/Ministère de la culture/CNRS – © Cyril FRESILLON / AASPE / CNRS Photothèque – © Kévin JACQUOT / MAP / Chantier Scientifique Notre-Dame de Paris / Ministère de la culture / CNRS – © V. ABERGEL/L. DE LUCA/MAP/SRA-DRAC/AGP/Vassar College/MIS/Chantier Scientifique Notre-Dame de Paris/Ministère de la culture/CNRS
L’expression « hydrogène à faible empreinte carbone » est plutôt recommandée par le Journal officiel. L’hydrogène jouera sans doute un rôle important dans la transition énergétique. Il possède en effet l’énergie massique la plus élevée des combustibles (1200 MJ/kg) soit trois fois celle de l’essence ; de plus son utilisation dans les piles à combustible avec l’oxygène ne forme en effet que de l’eau sans aucune émission de produits polluants et fait l’objet de nombreux articles et dossiers dans la presse. Il est aussi à ce jour le meilleur moyen de stocker massivement de l’énergie sur une longue durée ce qui permet de répondre à l’intermittence des énergies solaire et éolienne.
Acccéder au Zoom sur les derniers résultats de la production d’hydrogène « décarboné »
Les fêtes arrivent et vous allez peut-être nonchalamment poser votre verre de vin, de champagne ou de Coca-Cola® sur le plateau de marbre qui recouvre un ancien meuble chez vos parents ou grands-parents.
Aïe aïe aïe ! Un anneau rugueux et parfois blanchâtre risque d’apparaitre quand vous allez retirer votre verre si quelques gouttes du précieux liquide ont coulé le long du verre jusqu’à son pied. Mais que s’est-il passé ?
Des boissons légèrement acides
Les vins qu’ils soient blancs ou rouges sont légèrement acides. En effet ils contiennent entre autres les acides tartrique, malique, citrique, lactique et succinique. Les trois premiers proviennent du moût et les deux derniers des fermentations. Le pH est la grandeur qui mesure cette acidité (i). En moyenne il vaut environ 3,3 pour un vin blanc, 3,5 pour un rouge, 3,4 pour un rosé et 3,0 pour un champagne. Quant au Coca-Cola® qui contient de l’acide phosphorique, son pH est voisin de 2,5 pour le classique (ii). De même les jus de fruits comme les jus d’orange ou de citron sont acides. Les boissons gazeuses contiennent de plus une forte concentration en dioxyde de carbone CO2.
Et le marbre, de quoi est-il fait ?
Nous parlons ici du vrai marbre. Le calcaire ou carbonate de calcium (CaCO3) est le principal constituant des marbres. S’ils sont colorés, veinés, ou polychromes comme peut être celui du plateau de votre meuble c’est grâce à la présence d’autres éléments chimiques (iii). Selon les carrières d’où provient le marbre ces éléments sont caractéristiques et font sa renommée, comme le marbre blanc veiné de gris de Carrare ou le rose des carrières de Caunes-Minervois que l’on peut admirer au Grand Trianon dans le parc du château de Versailles…
Quelles réactions avec le marbre ? Il faut distinguer les boissons tranquilles des boissons gazeuses.
Pour les vins et jus de fruits non gazeux
Le calcaire est une base et si un acide l’attaque, il se passe une réaction qui s’accompagne d’un dégagement de dioxyde de carbone. Cela dégrade le calcaire en surface. Appelons RCOOH tout acide présent et la réaction s’écrit :
2 RCOOH + CaCO3 → 2 RCOO- + Ca2+ + CO2 (gaz°) + H2O
Quand vous retirez votre verre, un petit rond creux apparait et la surface du marbre y est devenue un peu rugueuse. La dégradation locale est irréversible. Pour redonner un bel aspect il faudrait repolir le marbre.
Pour le champagne et les boissons au cola, c’est plus compliqué !
Ces deux boissons présentent de plus du dioxyde de carbone dissous. Pour le champagne il s’est formé in situ lors de la fermentation alcoolique en milieu clos (iv). Pour le cola il est ajouté sous pression. À la réaction acido-basique précédente se superposent d’une part une attaque par l’acide phosphorique dans le cas du cola et pour les deux une suite de réactions liées à la forte présence de CO2 dissous.
CaCO3 (contenu dans le marbre) + CO2 (dans la boisson) + H2O → 2 HCO3- + Ca2+
Des ions bicarbonate (HCO3-) (v) et des ions calcium (Ca2+) sont dissous dans l’eau de la boisson et présents à la surface du marbre. Si on laisse s’évaporer l’eau il se forme un dépôt complémentaire. Du carbonate de calcium blanc se reforme avec dégagement de CO2 selon :
2 HCO3- + Ca2+ → CaCO3(s) (dépôt à la surface du marbre) + CO2 + H2O
Mais les conditions de cristallisation de ce carbonate ne sont plus les mêmes que celles géologiques qui ont conduit aux cristaux de calcite du marbre. La trace blanche qui apparait est ainsi du calcaire pulvérulent déposé sur le marbre !
C’est pourquoi il est déconseillé de réaliser un plan de travail en vrai marbre dans une cuisine car le risque de déposer un liquide (vinaigre, vin…) ou un aliment acide (citron, agrume…) est très important. Les plans de travail d’aspect pierre et résistants sont plutôt en granit ou en matériaux de synthèse capable de parfaitement imiter le marbre ! Il existe aussi des « plans de travail mélaminés » : sur le support en bois aggloméré on encolle une feuille décorative imitant le marbre blanc veiné ou de carrare et enduite d'une couche de résine mélamine (vi) polymère thermodurcissable très résistant.
Toutefois des plans de travail en marbre pour cuisine ou coin repas existent et sont traités en surface par imprégnation afin de boucher les pores et laisser en surface une couche hydrophobe à base de silicones. Il est nécessaire de les entretenir, les nourrir et les protéger par des produits adaptés (cire translucide…).
Certains lavabos ou vasques de salle de bain sont en vrai marbre. Le risque est plus faible d’y renverser un liquide acide, mais pensez-y !
Françoise Brénon et l’équipe Question du mois
(i) Le pH dans l’eau varie de 0 à 14. Le milieu est neutre quand le pH vaut 7. Il est acide si pH < 7 et basique si pH > 7.
(ii) À combien s'élève le pH du Coca‑Cola et qu'est-ce que cela veut dire? sur le site Coca-Cola Suisse
(iii) Le calcaire y est présent sous forme de cristaux de calcite, CaCO3, pouvant présenter des structures différentes avec des traces d’autres ions minéraux (manganèse Mn, fer Fe, zinc Zn…).
(iv) Ce sont presque 5 litres de CO2 qui sont piégés dans une bouteille standard créant une pression d’environ 5 à 6 bar. Attention donc de ne pas prendre le bouchon dans les yeux quand il saute ! Pour en savoir plus : Pourquoi y-a-t-il des bulles dans mon champagne ?
(v) L’ion HCO3- a pour nom hydrogénocarbonate mais il est plus connu dans le grand public sous le nom de bicarbonate.
(vi) Le monomère mélamine a pour formule C3H6N6
Pour en savoir plus
Carbonate de calcium / calcite/ calcaire, Produit du jour de la SCF
Zoom sur la vinification, Mediachimie.org
Mesurer le pH d’une solution : des acides, du raisin au vin, dossier Nathan Mediachimie, Mediachimie.org
Crédits illlustration : Tache sur marbre. Source : Françoise Brénon
Le colloque " Chimie et agriculture durable: un partenariat en constante évolution scientifique " a eu lieu le 10 novembre 2021. Retrouvez dès maintenant les captations vidéos des conférences du colloque sur Youtube/mediachimie ou sur le site de la Fondation de la Maison de la chimie.
Alors que la stratégie gouvernementale de la transition énergétique se base en partie sur l’énergie éolienne, nombre d’experts pointent la difficulté d’atteindre les objectifs fixés pour 2028. En effet il existe en France en 2021 8000 éoliennes sur 1400 parcs, qui ont fourni 8% de la production électrique en 2020 pour une puissance installée de 18 GW (1). Les objectifs de la feuille de route sont d’arriver à 34 GW pour l’éolien terrestre soit donc de doubler le nombre d’éoliennes, et de 5 GW pour l’offshore. Les puissances individuelles de chaque éolienne sont passées en plus de 20 ans de 1,5 MW à 5 MW voire 7 MW pour l’éolien en mer. Comme la puissance est proportionnelle à la surface du cercle décrit par les pales, celles-ci sont passées de 20 m à près de 160 m de longueur grâce au progrès de la chimie des matériaux composites (2).
Une note du ministère de la Transition écologique rappelle que pour atteindre les objectifs il sera nécessaire de s’assurer de la rentabilité des installations, de leur maintenance, de leur intégration paysagiste et enfin de leur recyclage. Au moment où de plus en plus de Français s’inquiètent ou s’opposent à de nouveaux champs terrestres d’éoliennes et les pêcheurs aux implantations en mer, il importe de se pencher sur le démontage et recyclage des installations (3).
La durée de vie d’une éolienne est de 20 à 30 ans et c’est depuis les années 80 à 90 que l’implantation des parcs s’est faite en Europe. Après plus de 20 ans de bons et loyaux services les machines peuvent être démantelées ou remplacées par d’autres plus modernes. On estime en France à 1500 le nombre d’installations à démonter d’ici 2025 et la PPE (Programmation Pluriannuelle de l’Énergie) précise que le recyclage des principaux composants sera obligatoire dès 2023. En fait près de 75 à 80% de la masse de l’installation peut être recyclée, le béton du socle et l’acier des mâts, la cellule et même le cuivre et les terres rares du rotor sont valorisables. Sur le site lui-même, les excavations des fondations, la remise en état du terrain sont prévues dans la convention privée.
Mais que faire des pales ?
Les premières générations d’éoliennes arrivent en fin de vie et le président de WindEurope estime que d’ici 2023 14000 pales d’éoliennes seront mises hors service et leur recyclage devient une priorité absolue. Ce n’est pas facile car elles sont constituées de matériaux composites comportant des fibres de verre ou plus récemment de fibres de carbone assemblées avec des résines époxy ou de polyester (4). Et jusqu’à présent notamment aux États-Unis elles terminent en enfouissement.
Plusieurs voies sont explorées :
Mécaniques, pour les pales renforcées en fibres de verre
- le broyage : la pale est découpée en morceau puis dans un broyeur à couteau transformée en poudre ou granulés et brulés en cimenterie par exemple ou enfouis.
- les fibres de verre courtes peuvent être utilisées comme renfort dans le béton dans le mobilier urbain ou enrobés routiers. Mais une fois séparées les fibres perdent une partie de leurs propriétés mécaniques.
Chimiques, pour les pales renforcées en fibres de carbone
La fibre de carbone (5) change les données économiques, car bien que de plus en plus utilisée elle reste cependant coûteuse et sa récupération même complexe a un coût élevé. Cela justifie une opération de recyclage. On peut alors trouver plusieurs procédés :
- la solvolyse à haute pression et à 200°-300°c par l’eau supercritique (6), celle-ci devient un solvant qui dissous les composés organiques comme les résines thermodurcissables des pales et permet de séparer les fibres de carbone de la matrice qui peuvent être récupérées.
- la pyrolyse entre 400° et 700°C en milieu semi confiné on « distille » la résine en oléfines, huiles et goudrons et on récupère la fibre de carbone qui n’a pas été oxydée.
- l’écoconception par l’utilisation d’une résine thermoplastique de type polyacrylate comme Elium℗ d’Arkema (7). Lors de la fabrication de la pale la résine liquide est déposée dans le moule sur les tissus et fibres de carbone, on y ajoute le catalyseur de polymérisation qui se fait à température ambiante et en quelques dizaines de minutes. L’avantage est d’utiliser les mêmes outils de conception que pour le thermodurcissable mais sans dépense d’énergie et la réparabilité à froid en cas de dommage est assurée. En fin de vie deux solutions : un procédé de broyage et d’ajouts aux granulés de polymères compatibles comme le PMMA ou l’ABS mené par la plateforme Canoe et l’ICMCB conduit à des nouveaux objets composites ; seconde solution, par chauffage des fragments du composite broyé, on peut aussi dépolymériser le thermoplastique et récupérer le monomère séparé des fibres, des colles et peintures (8).
Si d’ici 2030 on estime à plus de 35000 tonnes de pales issues du démantèlement en Europe et en France à un flux de 1500 t en 2029 nous avons en innovation chimique du pain sur la planche ! D’autant qu’il n’y a pas encore de vraies filières d’économie circulaire (9) pour les matériaux composites non seulement pour les pales d’éoliennes mais aussi pour l’industrie nautique - les coques de bateaux -, aérienne - les corps des avions - et automobile où ils envahissent le marché.
Jean-Claude Bernier
Novembre 2021
Pour en savoir plus
(1) Les énergies renouvelables (vidéo du CEA série « Les Incollables »)
(2) Les chimistes dans l’aventure des nouveaux matériaux (série Les chimistes dans…, mediachimie.org)
(3) Vitesse de déploiement et acceptabilité des nouvelles technologies dans le domaine des énergies, Grégory De Temmerman, Colloque Chimie et énergies nouvelles (février 2021)
(4) Matériaux composites à matrice polymères, d'après la conférence de Patrice Hamelin, La chimie et l’habitat, EDP Sciences (2011)
(5) Les matériaux dans le sport (r)évolutionnaires ! Patrice Bray, Odile Garreau et Jean-Claude Bernier (série Chimie et … en fiches, Médiachimie.org), d’après l’article de Y. Rémond et J.-F . Caron, in La chimie et le sport, EDP Sciences (2011)
(6) Les fluides supercritiques à votre service, S. Sarrade et K. Benaissi, L'Actualité Chimique n°371-372 (2013) p. 72
(7) Les matériaux de la transition énergétique : les attentes et les défis, J.-P. Moulin, Colloque Chimie et énergies nouvelles (février 2021)
(8) Le prix Pierre Potier des lycéens 2020 (Vidéo YouTube)
(9) Les chimistes dans l’économie circulaire (série Les chimistes dans…, mediachimie.org)
Crédits : image d'illustration, licence CC0, PxHere
Les versions écrites et vidéos des conférences du colloque « Chimie et énergies nouvelles » sont en ligne sur Mediachimie.
Notre futur énergétique fait actuellement l’objet de débats dans tous les media, et dans les milieux politiques et économiques. C’est un sujet fondamental pour la Société, l’Industrie, l’Économie et aussi pour la Formation des jeunes puisque l’énergie est l’un des principaux thèmes des programmes de terminales des différentes filières scientifiques.
Nous avons souhaité faire un point scientifique objectif sur les principaux thèmes de ces débats dans les conférences du colloque « Chimie et énergies nouvelles ». Les conférenciers ont été choisis parmi les meilleurs experts de la Recherche, de l’Industrie, et de la Politique économique.
Pour faire face aux besoins toujours croissants de la demande d’énergie en dépits d’économies envisagées et garantir l’accès de tous à des services énergétiques fiables et à des couts abordables, toutes les énergies décarbonnées flexibles, propres, abondantes capables de se substituer aux énergies fossiles seront nécessaires. Pour cela il est urgent d’innover mais aussi d’optimiser les technologies existantes en lien avec le développement durable :
- Quel pourra être le paysage de l’énergie en 2050 ?
- Quel sera l’avenir du nucléaire ?
- Quelle sera la trajectoire technologique et industrielle pour améliorer la compétitivité de l’hydrogène zéro carbone ?
- Quelle sera l’évolution des véhicules électriques et thermiques ?
Ces questions et beaucoup d’autres ont été traitées par les conférenciers pour faire de ce colloque un outil d’information objectif et un outil d’actualisation des connaissances utilisable par un large public.
Les bonbons et dragées se font une part belle dans le monde des sucreries, et au premier regard, leurs couleurs nous incitent à les goûter.
Nous connaissons tous ces petits personnages bleus de BD, logeant dans un village champignon et aussi déclinés en bonbons ! Mais comment les colorer en bleu ?
Caractéristiques physico-chimiques nécessaires pour être un colorant utilisable dans un bonbon
Le bonbon est par exemple constitué d’une solution aqueuse à laquelle on ajoute un colorant alimentaire, du sucre et de la gélatine à chaud. Les molécules colorées susceptibles d’être utilisées doivent pouvoir se disperser de façon uniforme au sein de la gélatine, résister aux différents traitements lors de la fabrication du bonbon et sur le long terme résister à la lumière et à l’oxygène de l’air.
Qu’en est-il du bleu patenté V ? (1)
Le bleu patenté V (i), au nom de code E 131, est un colorant alimentaire de synthèse, soluble dans l’eau. Il donne un bleu vif et répond à toutes les caractéristiques nécessaires précédemment citées. Il est ou a été le colorant bleu de nombreux bonbons et autres aliments et boissons. Mais Il est soupçonné d’un potentiel allergène. Son utilisation est réglementée en Europe et sa dose journalière admissible (DJA) a été diminuée en 2013 à 5mg/kg de masse corporelle (ii) par l'Autorité européenne de sécurité des aliments (EFSA).
Compte tenu que les enfants sont les principaux consommateurs de bonbons et que la demande du public vers des produits d’origine naturelle est forte, certains fabricants ont cherché à remplacer ce colorant par un autre issu d’une ressource naturelle, ce qui est effectif depuis 2020 pour les petites créatures bleues !
Le bleu dans les plantes sauvages
Même si bleuet, jacinthe des bois, myosotis, mûres et myrtilles …nous évoquent la couleur bleue, la nature nous offre très peu cette couleur parmi les plantes sauvages. Et si on arrive à en extraire les molécules responsables de leur couleur encore faut-il qu’elles répondent aux caractéristiques nécessaires à leur utilisation et que la matière première soit abondante. On comprend bien alors que ces plantes ne vont pas répondre à la demande.
La spiruline
La recherche a été longue pour trouver un composé naturel fournissant un bleu stable, répondant à tous les critères y compris l’innocuité et dont la production puisse être notable. La spiruline alimentaire s’est avérée le bon candidat. La spiruline est un ensemble de cyanobactéries (iii) alimentaires procaryotes (iv) qui se reproduisent dans des eaux chaudes (35 à 40°C) peu profondes et saumâtres (on parle aussi de microalgues) (v). Il existe plusieurs types de souches de bactéries et selon les zones géographiques (vi) et les conditions de production, la composition chimique varie (2). Toutefois en résumé les spirulines sont avant tout très riches en protéines. Elles contiennent également des glucides, un peu de lipides, des vitamines, des sels minéraux et des pigments. Ces différents constituants sont indépendamment recherchés pour des applications diverses (santé, alimentation, pigments, aquaculture, cosmétique…).
La couleur bleue issue de la spiruline
La spiruline contient d’une part des pigments verts (chlorophylles) et oranges (bêta-carotènes) et parmi les protéines qui la constituent il y a des phycocyanines qui possèdent un groupe chromophore bleu fixé à la chaine protéïque.
Les bêta-carotènes s’oxydent à l’air, les chlorophylles se dégradent à la lumière. Par contre les phycocyanines sont d’une part des anti-oxydants et d’autre part plus résistantes à la photo-destruction. Ainsi la spiruline séchée et longtemps exposée à l’oxygène de l’air et à la lumière, devient bleutée. Les phycocyanines représentent 12 à 17 % en masse (selon la souche) de la spiruline séchée.
La spiruline la plus utilisée est celle issue de microorganismes Arthrospira platensis. On en extrait (vii) tout particulièrement la C-phycocyanine qui, purifiée, concentrée et séchée, donne une poudre bleue, utilisée comme colorant alimentaire.
La C-phycocyanine peut très schématiquement être représentée selon
Chaine protéinique (viii)― groupe chromophore bleu
La structure de son groupe chromophore est représentée ci-contre (source https://www.rcsb.org/ligand/CYC)
La C-phycocyanine a été autorisée en 2013 par la FDA comme colorant alimentaire des gommes et bonbons et est en 2020 le seul colorant bleu naturel autorisé aux USA, Europe et Chine dans des applications alimentaires telles que les pâtisseries (glaçage, nappage…) laitages, gélatines, céréales…, des applications pharmaceutiques (enrobages de produits) et cosmétiques.
La phycocyanine est aussi très recherchée pour son pouvoir anti-oxydant.
Alors bonne dégustation, mais attention au sucre !
Françoise Brénon
(i) Le bleu patenté est utilisé sous forme de sel de calcium Ca(C27H31N2O7S2)2 ou de sodium Na(C27H31N2O7S2).
Sa formule développée est page 8 https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2013.3108
(ii) Source Avis scientifique sur la réévaluation du brevet Blue V (E 131) en tant qu’additif alimentaire EFSA Journal (2013)
(iii) Les cyanobactéries (cyano du grec ancien kyanos signifiant bleu) sont des bactéries qui synthétisent leurs molécules organiques comme les plantes, par photosynthèse. Afin de capter la lumière, elles utilisent des pigments présents dans leurs structures.
(iv)Un procaryote est un microorganisme unicellulaire dont la structure cellulaire ne comporte pas de noyau.
(v) Elles ont une configuration spatiale en forme d’hélice d’où le nom spiruline dérivant du latin spira (enroulement).
(vi) En 2018 la production mondiale provient de Chine à plus de 50 % (2). Parmi les autres pays producteurs, citons les USA (Hawaï), le Mexique, la Thaïlande… La France en produit en très petits tonnages.
(vii) Plusieurs procédés d’extraction sont possibles (2) et (3). Après une destruction de la membrane de la bactérie (désintégration cellulaire) tout en évitant la dénaturation des protéines, il faut séparer les protéines solubles dans l’eau, ce qui est le cas des phycocyanines, des autres protéines liposolubles et des lipides. Pour ceux-ci on essaie d’éviter des solvants organiques à impact environnemental. L’extraction à l’aide de CO2 supercritique répond par exemple à ce critère.
(viii) La structure de sa chaine protéïque est répertoriée sur le site PDB (Protein Data Bank) RCSB PDB - 1GH0: STRUCTURE CRISTALLINE DE LA C-PHYCOCYANINE DE SPIRULINE PLATENSIS
Pour en savoir plus
(1) Couleur et coloration des aliments, une simple affaire de chimie ? de Sylvain Guyot, La chimie et l’alimentation (EDP Sciences)
(2) Spiruline : Culture, production et applications, document très complet sur le sujet par Maryline Aber Vian, Techniques de l’Ingénieur publié le 10/03/2021
(3) Évaluation des méthodes d’extraction de la phycocyanine et son rendement à partir de spirulina platensis de Imène Lafri et coll., Agrobiologia
Le prix Nobel de chimie 2021 vient d’être attribué à deux chimistes un allemand Benjamin List et à un américain David MacMillan, pour « avoir développé un outil de construction de molécules : l’organocatalyse asymétrique ». L’Académie Nobel couronne ainsi deux secteurs très actifs de la chimie : la catalyse et la chimie asymétrique.
Pour fabriquer des molécules, qui nécessitent souvent un enchaînement de plusieurs réactions, que ce soit au laboratoire ou dans un procédé chimique industriel, on cherche à diminuer le nombre d’étapes et à les accélérer sans pour autant augmenter la température du milieu réactionnel. Pour cela on fait appel à des catalyseurs (1). Ces catalyseurs étaient souvent des métaux ou des complexes de métaux de transition, par exemple le platine pour les piles à hydrogène ou le rhodium pour les pots catalytiques. Or dans la nature il existe des enzymes capables de synthétiser des molécules complexes asymétriques comme le cholestérol ou la chlorophylle et tout à fait exemptes de métaux.
Avant d’aller plus loin, parlons de molécules asymétriques (2) (3). Ce sont des molécules présentant les mêmes atomes et les mêmes enchainements de liaisons mais qui dans les 3 dimensions ne sont pas superposables à leur image obtenue par symétrie par rapport à un miroir plan. Il en est ainsi de nos mains droite et gauche. Ces molécules sont dites chirales et les deux images ou molécules « miroir » sont des isomères appelés énantiomères. Or souvent ces deux molécules n’ont pas la même propriété. L’exemple le plus connu est celui du limonène. La configuration atomique R a un parfum d’orange et S de citron. En pharmacie ou en parfumerie il est essentiel de synthétiser l’isomère qui possède la propriété et pas l’autre d’où les applications de la catalyse asymétrique.
Les deux chercheurs ont essayé de résoudre cette énigme en utilisant des catalyseurs organiques simples et sans métaux. Benjamin List en observant les propriétés des enzymes doués de chiralité s’est aperçu que seuls quelques-uns de leurs acides aminés avaient une action. Il a essayé alors la proline un acide aminé simple comme catalyseur dans une réaction d’aldolisation (4), et chic ! Dans le produit de réaction un isomère présentant la même chiralité que son catalyseur était largement dominant.
À des milliers de kilomètres de là, David MacMillan était un spécialiste des catalyseurs métalliques asymétriques, coûteux et difficiles à appliquer industriellement. Il a alors testé des molécules organiques comportant un atome d’azote au sein d’une structure de type ion iminium attracteur d’électrons. Sur plusieurs essais il a constaté que certaines d’entre elles favorisaient l’une des molécules miroir à plus de 90%. Il venait aussi indépendamment de son collègue allemand d’inventer « l’organocatalyse organique ».
À leur suite se sont développées de nombreuses applications de molécules chirales aux propriétés essentielles en pharmacologie pour de nouveaux médicaments, en chimie des parfums pour la cosmétique, avec des procédés plus respectueux de l’environnement.
Un petit point d’histoire, c’est en 2001 que le prix Nobel de chimie avait été attribué pour la catalyse asymétrique à Knowles, Noyori et Sharpless via des complexes organométalliques.
Jean-Claude Bernier
7/10/2021
Pour en savoir plus
(1) Chimie et symétrie : chiralité, Dmitri Savostianoff, Chimie Paris n°337 (2012) p. 3-5 (lien vers http://www.mediachimie.org/ressource/chimie-et-sym%C3%A9trie-chiralit%C3%A9), les autres liens marchent)
(2) Polymères supramoléculaires et catalyse asymétrique, M. Raynal et L. Bouteiller, L’Actualité chimique n°430-431 (juin-juillet-août 2018) pp. 37-41
(3) Zoom sur la chiralité et la synthèse asymétrique (J.-P. Foulon, site Mediachimie.org)
(4) Comment passer de la musique à la chimie ? La réaction d’aldolisation (J.-P. Foulon, site Mediachimie.org)
Crédit illustration : Benjamin List and David W.C. MacMillan. Prix Nobel de Chimie 2021. Ill. Niklas Elmehed © Nobel Prize Outreach.
Lorsqu’une tumeur cancéreuse est détectée dans l’organisme il y a plusieurs stratégies pour l’éliminer : la chirurgie d’abord mais souvent associée à deux autres traitements, la chimiothérapie et la radiothérapie. Car même si l’essentiel de la tumeur a été retiré, l’amas de cellules cancéreuses peut être éliminé par la prise de médicaments qui réduisent ou stoppent la division cellulaire, c’est la chimiothérapie (1), ou bien localement par irradiation des cellules à l’aide de rayonnements énergétiques fournis par des isotopes radioactifs, c’est la radiothérapie (2).
Les inconvénients de ces méthodes sont connus. Les molécules toxiques utilisées en chimiothérapie atteignent non seulement les cellules cancéreuses mais également toutes les cellules du corps d’où des effets secondaires. Les rayonnements issus des sources radioactives sont soit des électrons (rayons β) ou des rayons X ou des rayons γ (3) qui provoquent des lésions sur les brins d’ADN dans les noyaux des cellules cancéreuses plus ou moins bien ciblées.
Les traitements peuvent être externes mais pour ne pas irradier la peau du patient on peut injecter un produit radioactif qui va attaquer les cellules cancéreuses, par exemple l’iode 131 pour la thyroïde, ou le phosphore 32 en cas de leucémie.
La particularité du traitement qui fait appel au plomb 212 vient du fait que le rayonnement énergétique est apporté par des particules α constituées de 2 protons et de 2 neutrons, bien plus grosses que les électrons et bien plus énergétiques mais que leur propagation se limite à quelques centaines de microns dans le corps.
Particules β | Particules α | |
composition | électrons | 2 neutrons + 2 protons |
énergie | 0,1 KeV.µm-1 | 100 KeV.µm-1 |
parcours dans le corps | Quelquesmm | quelques microns |
Tableau comparatif des rayonnements
On voit alors vite les avantages des particules α très ionisantes. Elles peuvent plus facilement dégrader l’ADN d’une cellule cancéreuse, et comme leur distance de propagation est mille fois plus petite que celle des électrons, la zone irradiée est comparable à la taille de la cellule que l’on veut ioniser sans que les cellules saines à côté ne soient touchées.
Les émetteurs de particules α semblent donc idéales pour le traitement de certains cancers à condition d’en trouver suffisamment de sources et de pouvoir les guider jusqu’aux cellules cancéreuses.
C’est ici qu’intervient la découverte d’un chercheur d’Areva (maintenant Orano) qui cherchait à valoriser des tonnes de minerai de thorium (4) qui leur restaient après extraction de l’uranium. L’idée de l’alphathérapie a ainsi germé dans les années 2006 et elle s’est précisée en 2012 et 2014 par des partenariats en oncologie avec des laboratoires pharmaceutiques européen et américain de la filiale Orano Med (5) en charge du développement industriel.
La chaine de désintégration du thorium (6) est un peu complexe et conduit à de nombreux intermédiaires.
232Th→ 228Ra + α 228Ra → 228Ac + β 228Ac →228Th + β 228Th → 224Ra + α
224Ra → 220Rn + α 220Rn →216Po + α Pour aboutir ensuite au Plomb 212 216Po → 212Pb + α --
Cet isotope est assez bien placé pour une utilisation radiopharmaceutique puisqu’il a une demi-vie de 11 h et se désintègre au bout d’une semaine donnant d’abord le bismuth 212 et enfin le plomb 208 en libérant des particules α.
Les séparations et extractions sont complexes et un fût de 350 kg de thorium 232 ne donne in fine que quelques dizaines de milligrammes de plomb 212.
Il faut ensuite guider ce « radio-émetteur » vers les cellules cancéreuses. Or celles-ci génèrent à leur surface des antigènes contre lesquels il faut apporter des anticorps capables de les reconnaitre.
La stratégie est d’abord de trouver un ligand du 212Pb qui puisse le chélater (*) pour éviter tout relargage du plomb dans le corps. C’est le TCMC (**) qui a été choisi car il a, de plus, la propriété de se coupler assez facilement avec des anticorps monoclonaux (***) qui vont reconnaître les antigènes produits uniquement à la surface des cellules cancéreuses (7) (8). Une fois les anticorps synthétisés on greffe à leur surface le complexe (TCMC-212Pb) et le vecteur ainsi formé va voyager dans le corps jusqu’à reconnaitre les cellules cancéreuses, et celles-là seulement, et les éliminer par le rayonnement α en préservant les cellules saines (9).
Schématisation de l'interaction antigène/anticorps dans une immunothérapie avec rayonnement α produit par le 212Pb
Les essais cliniques sont en cours aux États-Unis et bientôt en Europe. La filiale Orano Med investit en France plus de 100 M€ en Haute Vienne pour une plateforme industrielle dénommée ATEF (Advanced Thorium Extraction Facility) avec salle blanche répondant aux règlements de l’ANSM pour obtenir la qualification d’Établissement Pharmaceutique. L’ambition est de mettre sur le marché des traitements dès 2025. Les capacités de production pour plusieurs milliers de radiomédicaments sont prévues et même s’il n’y a que quelques dizaines de milligrammes de 212Pb par fût traité, Orano dispose de plusieurs milliers de fûts de thorium à valoriser où d’ailleurs la chaine des isotopes se reconstitue par radioactivité et désintégration naturelle.
Jean-Claude Bernier et Françoise Brénon
Septembre 2021
(*) Le cation central, ici Pb++, entre en interaction avec une molécule appelée ligand en formant une molécule stable. Le processus est appelé chélation et le composé formé un chélate ou complexe.
TCMC pour 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamoylmethyl)cyclododecane
(***) Un anticorps monoclonal est anticorps synthétisé par des cellules (bactérie, levure…) sélectionnées et cultivées pour leur capacité à produire un anticorps particulier capable de traiter une maladie (Source : site Vidal).
Pour en savoir plus
(1) Petites et grosses molécules innovantes pour le traitement du cancer, conférence et article de Jean-Pierre Armand, Colloque Chimie et nouvelles thérapies, 13 novembre 2019
(2) La radioactivité, document du CEA
(3) Quelle dose moyenne de radioactivité reçoit-on en France, Jean-Claude Bernier (question du mois, Mediachimie.org)
(4) La découverte du thorium, J.-J. Berzelius
(5) Site de la société Orano Med
(6) La chimie pour la séparation et la gestion des déchets nucléaires, conférence et article de Bernard Boullis, Colloque Chimie et enjeux énergétiques, 14 novembre 2012
(7) Le plomb radioactif : arme de destruction ciblée des cellules cancéreuses, de Pauline Junquet et Solène Batut (site Culture Sciences Chimie)
(8) Développement d’un immunoconjugué cytotoxique ciblant le récepteur de l’IGF-1, conférence et article de Jean-François Haeuw, Colloque Chimie et nouvelles thérapies, 13 novembre 2019
(9) Les nanomédicaments : une approche intelligente pour le traitement des maladies sévères, conférence et article de Patrick Couvreur, La chimie et la santé, EDP Sciences ( 2010)
Crédits : Image d'illustration : Cellules cancéreuses par Sam Levin, licence CC BY 2.0 ; molécule TCMC site CultureSciencesChimie
Les champions olympiques ont fait fort en athlétisme à Tokyo ! Des temps canons au 400 m haies, des records féminins battus au 100 m et 200 m, des records olympiques en demi-fond et aux 5 000 et 10 000 m, des sauts en longueur remarquables… De quoi faire mentir les spécialistes de la physiologie sportive (1) qui prévoyaient une limite humaine aux efforts et résultats sportifs.
En réalité ces progrès viennent bien sûr d’entrainements scientifiquement programmés, mais aussi d’avancées technologiques où la chimie a un grand rôle.
Prenons tout d’abord les « chaussures miracles » lancées par un grand nom de l’équipement sportif en 2020 baptisées « alphafly » ou « vaporfly » et copiées bien évidement par tous les grandes marques concurrentes. Elles ont plusieurs couches :
- une semelle externe élastique dotée de crampons très légers disposés en forme de pentagone
- une deuxième semelle interne rigide en composite carbone-carbone riche en fibres de carbone (2)
- des couches de mousse en polyéther à blocs de polyamide (PEBA) (3)
- une tige et un tissu qui maintiennent le pied en fibres imper-respirantes en PTFE (de type Gore-Tex®) (4)
Ces multicouches ont toutes une utilité : les crampons permettent d’accrocher la piste comme points d’appui pour l’élan, la mousse expansée souvent issue de polymères à blocs avec des polyamides donne l’élasticité et la légèreté à la chaussure et surtout restitue bien l’énergie aux pieds de l’athlète. De plus la semelle en carbone rigide apporte de la rigidité à la voûte plantaire et redonne aussi de l’énergie à la chaussure qui renvoie mieux et permet de mieux avancer.
Les chaussures sont un élément d’explication mais le sol et son revêtement participent aussi à l’avancée technologique. On se rappelle l’arrivée dans les années 70 des pistes en tartan, couplant un revêtement en caoutchouc et polyuréthane avec des agglomérats de gravier en sous-couches, qui ont déjà changé les performances des courses précédentes courues sur pistes cendrées. La piste à Tokyo en 2021 fabriquée sur mesure par l’entreprise italienne Mondo ne fait que 14 mm d’épaisseur. Au-dessous du polyuréthane sont disposés des granulés de caoutchouc en design hexagonal qui ménagent de petites poches d’air. La piste absorbe l’énergie des coureurs et la renvoie avec un effet « trampolino » dans le sens de la marche. Plusieurs coureurs ont dit qu’ils avaient l’impression de « courir sur de l’air » ou de « marcher sur des nuages » sur cette piste très rapide.
De plus les fabricants ont fait un réel effort de développement durable et par souci de l’environnement : les mousses de polyamides viennent d’un bioprocédé rendu célèbre par Arkema utilisant des graines de ricin (5) et leur expansion est faite par insufflation d’azote qui les garantit exempt de CFC, HCFC ou COV (*) (6). Par ailleurs le principal fabricant a mis en place une chaine de recyclage.
La conjonction des chaussures et de la piste apporte un progrès sur les temps de course en sprint et en fond de l’ordre de 2 à 4 % ce qui fait dire au roi du sprint Usain Bolt « avec ces chaussures je serais passé au 100 m sous les 9"50 ! »
Certains cependant critiquent ces records et les assimilent à du « dopage technologique » pour les privilégiés qui disposent de ces équipements. Ce n’est pas sans rappeler la polémique qui a accompagné les performances des nageurs qui étaient revêtus d’une combinaison en polyuréthane et élasthanne sur laquelle l’eau glissait comme sur les écailles de poisson (7). Elles furent ensuite interdites par les autorités des fédérations sportives internationales. Il n’en est pas de même pour ces chaussures innovantes qui avant d’être employées ont reçu l’agrément des comités sportifs et olympiques.
Il n’en reste pas moins que la discipline d’entrainement physique et psychologique des champions est très dure et pas à la portée de n’importe quel amateur. En cette fin août alors que se déroulent les jeux paralympiques que dire alors de la force morale qui anime ces athlètes handicapés qui concourent. Même si diverses prothèses de haute technologie peuvent parfois les aider (8), ce sont des années de souffrance et d’effort durant les entrainements qui leur permettent l’accès au podium.
Jean-Claude Bernier
Août 2021
(*) CFC chlorofluorocarbures, HCFC hydrochlorofluorocarbures, COV composés organiques volatils
Pour en savoir plus :
(1) Optimisation des performances, complexité des systèmes et confrontation aux limites, Jean-François Toussaint, in La Chimie et le sport, EDP Sciences (2011)
(2) Les composites carbone/carbone, J. Thébault et P. Olry, L’Actualité Chimique, n° 295-296 (mars-avril 2006)
(3) Comment faire des polyamides à partir de l'huile de ricin ? Du ricin au Rilsan® : une réaction de polymérisation à la française, Jean-Pierre Foulon, Réactions en un clin d’œil, Mediachimie.org
(4) Les textiles et les vêtements pour le sport, C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, in La chimie dans le sport, collection collection Chimie et... Junior (2014)
(5) La grande aventure des polyamides, J.-C .Bernier et R.-A. Jacquesy, L’Actualité Chimique n° 360-361 (février-mars 2012)
(6) Chimie atmosphérique et climat, conférence et article de Guy P. Brasseur, colloque Chimie et changement climatique, novembre 2015
(7) Des textiles pour sportifs. Apport de la chimie pour améliorer confort et performances, Fabien Roland, in La Chimie et le sport, EDP Sciences (2011)
(8) Nouvelles prothèses, Serge Lécolier, Chimie Paris n°338-339 (2012)