Il est très fréquent d’entendre parler de pile à hydrogène, de voitures à hydrogène, de véhicule « propre », de mobilité hydrogène, de mobilité verte, d’hydrogène vecteur d’énergie, d’hydrogène gris ou vert…
Mais de quel hydrogène parle-t-on ?
Il s’agit de la molécule de dihydrogène, H2, gaz qui n'existe quasiment pas à l'état naturel sur Terre.
En effet, l’élément hydrogène, de symbole H, est très abondant sur la Terre mais seulement sous forme combinée :
- soit avec l’oxygène dans la molécule d’eau, H2O,
- soit avec le carbone dans les hydrocarbures, comme le gaz naturel ou méthane (CH4) ou le pétrole ; ce sont des mélanges de composés de formules générales CnHm
- ou encore dans les molécules du vivant.
Si l’on dispose de dihydrogène, il est possible de récupérer de l’énergie soit sous forme de chaleur via sa combustion directe avec le dioxygène (1) - c’est le cas des moteurs à hydrogène - , soit sous forme d’électricité via une pile à combustible (2) . Dans les deux cas la réaction globale ne produit que de l’eau selon :
2 H2 + O2 →2 H2O
Ainsi le dihydrogène est un vecteur d’énergie mais pas une source d'énergie car n'existant pas à l'état naturel, il faut préalablement le produire à partir d’eau ou d’hydrocarbures, ce qui nécessite d’abord une dépense d’énergie.
L’hydrogène gris ou comment créer du dihydrogène à partir des hydrocarbures
Le réformage (ou reforming) du gaz naturel (3) est actuellement la principale source de dihydrogène. Du méthane et de l’eau sont mis à réagir à haute température (nécessitant donc une consommation d’énergie). La réaction mise en jeu est :
CH4 + H2O = CO + 3H2 suivie de CO + H2O = CO2 + H2
On peut aussi faire le réformage des hydrocarbures liquides (pétrole) ou du charbon (4) .
En plus de la consommation d’hydrocarbures, on notera que pour faire 1 kg d’hydrogène par réformage, on émet de 6 à 10 kg de CO2.
L’hydrogène décarboné ou comment créer du dihydrogène par électrolyse de l’eau
L’apport d’énergie électrique via deux électrodes, plongées dans de l’eau en milieu basique (ou de l’eau acidifiée), reliées aux bornes d’un générateur de courant continu, permet la décomposition de l’eau et la création de dihydrogène, selon la réaction :
2 H2O → 2 H2 + O2
Dans quel cas cet hydrogène décarboné est-il « vert » ?
Tout dépend de la source d’électricité. Si elle provient d’une centrale à charbon, d’une centrale à fuel lourd ou au gaz, cet hydrogène reste gris ! Si la source d’électricité est elle-même décarbonée et renouvelable, courant électrique provenant de barrages hydrauliques, d’éoliennes ou de panneaux solaires, on parle d’hydrogène vert.
Le grand intérêt de cette électrolyse est de permettre le stockage de l’énergie sous forme de dihydrogène pour ces sources intermittentes d’énergie avant de récupérer ultérieurement l’énergie via sa combustion dans une pile à combustible ou dans un moteur. C’est en ce sens que l’hydrogène vert participera à la transition énergétique.
Toutefois il faut garder à l’esprit que chacun des rendements de l’électrolyse et de la pile à hydrogène sont inférieurs à 1 et que le stockage consomme aussi de l’énergie (5) .
Françoise Brénon et l'équipe Question du mois
(1) La combustion du dihydrogène
Sa combustion en présence d’oxygène génère de l’eau selon 2 H2 + O2 →2 H2O, et s’accompagne d’un très important dégagement de chaleur (143 kJ pour un gramme de H2 soit trois fois plus que l’essence ou le diesel).
Comme c’est un gaz très léger, 11 fois plus léger que l’air, il faut pour l’utiliser, le comprimer très fort ou le liquéfier. C'est ainsi l'un des combustibles liquides les plus utilisés au décollage, dans les étages cryogéniques des lanceurs de fusée. Par exemple, la navette spatiale Ariane 5 emporte jusqu'à 26 tonnes d'hydrogène liquide dans ses réservoirs !
Schématiquement, la pile présente deux compartiments alimentés par du dihydrogène à l’anode et de l’air à la cathode. Quand la pile débite, la réaction globale est la même réaction que celle de la combustion directe, soit
2 H2 + O2 → 2 H2O. Voir https://www.mediachimie.org/sites/default/files/FR-pile-images.pdf
Ainsi des voitures électriques, munies d’un réservoir à dihydrogène comprimé, peuvent fonctionner avec le courant continu délivré par une pile à hydrogène, le dioxygène provenant en continu de l’air. Ces voitures, lors de leur fonctionnement, émettent seulement de la vapeur d’eau et non plus des oxydes d’azote ni de dioxyde de carbone. C’est ainsi que l’on parle de « véhicule propre ».
(3) Le réformage du méthane nécessite de travailler entre 800 et 900 °C et sous 350 bars, en présence de catalyseur à base d’oxyde de nickel sur des anneaux d’alumine imprégnés par 10 à 16 % en masse de Ni (leur durée de vie est comprise entre 8 et 10 ans).
(4) Les matières premières utilisées, dans le monde, pour produire le dihydrogène, en 2014 sont à 96 % d’origine fossile.
gaz naturel | hydrocarbures liquides | charbon | électrolyse |
49% | 29% | 18% | 4% |
(5) Globalement l’électrolyse de l’eau, le transport et la compression du gaz à 700 bars consomment environ 75 % de l’énergie que l’on aurait pu récupérer lors du fonctionnement de la pile. En effet, pour qu’un véhicule fonctionne avec une pile à hydrogène vert, il a été nécessaire en amont de faire l’électrolyse de l’eau, d’acheminer le dihydrogène à la station et enfin de comprimer fortement le gaz pour qu’il occupe un volume réduit dans la voiture. On admet que l'électrolyse de l'eau a un rendement compris entre 50 et 60 % par rapport à la puissance électrique fournie. Les rendements de l’électrolyse à haute température peuvent monter plus haut (80 à 90 %) mais il faut faire de la vapeur à 300-800 °C. Enfin il faut comprimer le gaz à 700 bars (de l’énergie est donc dépensée par le compresseur) et la température du gaz s’élève (selon la loi pV=nRT), gaz qu’il faudra refroidir après.
Les piles alcalines, les piles boutons, les batteries ont envahi notre vie de tous les jours. Elles apportent l’énergie électrique aux jouets, aux lampes torches, aux téléphones et tablettes portables, aux véhicules automobiles… Notons bien en français la distinction « pile » chargée une fois pour toute et qui se décharge à l’utilisation et « batterie » ou accumulateur qui délivre un courant grâce à une réaction électrochimique réversible et qui peut se recharger.
90 % des piles sont des piles « alcalines ». On trouve les « piles bâtons » cylindriques qui ont une anode constituée de zinc métallique (Zn) en poudre et d’un électrolyte gélifié contenant de l’hydroxyde de potassium (KOH). La cathode est constituée d’un mélange de dioxyde de manganèse (MnO2) et de carbone graphite (C) le tout enserré dans un cylindre d’acier.
Les piles boutons comportent souvent un gel de zinc et de potasse (KOH) et de l’argent (Ag), puisque le mercure (Hg) est maintenant interdit.
Les batteries rechargeables sont diverses :
- batteries nickel-cadmium (1), Ni-Cd, pour les outils de bricolage autonomes ;
- batteries nickel-hydrures métalliques de terres rares et de nickel (2), Ni–MH, pour les ordinateurs et les téléphones ;
- et de plus en plus de batteries Li-ion (3) (ion lithium) qui comportent une anode en graphite et des cathodes avec des oxydes mixtes de cobalt de type LiCoO2 , ou nickel, ou manganèse.
Sachant que l’on utilise environ 33 000 tonnes de piles et batteries en usage par an, cela représente environ 10 000 tonnes de zinc et 8 000 tonnes de fer et nickel sans oublier le cuivre.
Il ne faut donc surtout pas les jeter dans la nature ou dans les poubelles car vous dispersez alors partout des métaux lourds comme Zn, Fe, Co, Mn, et pire, des métaux pouvant être toxiques comme Ni ou Cd ainsi que des métaux rares et coûteux comme Cu, Ag et des terres rares : néodyme (Nd), praséodyme (Pr), dysprosium (Dy) et lanthane (La).
Une attitude d’éco-citoyen responsable exige aussi une économie des ressources naturelles et c’est une raison de plus pour mettre piles et batteries dans les bacs spécialisés de recyclage que l’on rencontre dans toutes les grandes enseignes de supermarchés ou de bricolage.
Sur 100 piles utilisées | ||
30 sont jetées aux ordures ou dans la nature | 35 sont stockées ou en usage chez les particuliers | 35 sont recyclées par les filières existantes |
L’objectif est de développer les procédés de recyclage par broyage, puis hydrométallurgie et pyrométallurgie pour récupérer les alliages ferreux et affiner les métaux non ferreux ou rares.
Les directives européennes de recyclage sont d’en atteindre au moins 45 % par des organismes nationaux agréés, comme Corepile ou Sorelec, qui, en France, se partagent le recyclage d’un peu plus de 12000 tonnes de piles et batteries.
Dans le cas particulier de l’industrie automobile, où la plupart des véhicules sont équipés de batteries au plomb et acide sulfurique, il y a obligation de les recycler. Plus de 95 % sont désossées, l’acide est neutralisé, le plomb refondu et le polypropylène des caissons lavé et transformé en granulés recyclables.
Avec l’augmentation des véhicules électriques et des millions de tonnes de batteries ion–lithium qui s’annoncent, des filières spécialisées vont se mettre en place pour récupérer et recycler Cu, Co, Ni, Mn et Li.
Donc quand vos piles ou batteries ne fonctionnent plus, ne les jetez plus n’importe où et pensez recyclage, les chimistes s’en occupent pour une seconde vie (4).
Jean-Claude Bernier et l'équipe Question du mois de Mediachimie
(1) Une des électrodes est en oxyde de nickel hydraté NiO(OH) et l’autre est en cadmium, Cd.
(2) Une des électrodes est composée d’un hydrure métallique à base de lanthane (terre rare) et de nickel, de type LaNi5 et l’autre de l'oxyhydroxyde de nickel, NiO(OH). L’électrolyte est de la potasse.
(3) L’Académie suédoise vient de couronner en 2019 les inventeurs des batteries ion-lithium par le prix Nobel de chimie. Pour en savoir plus voir l'éditorial Un Nobel de chimie populaire
(4) Pour en savoir plus, voir la vidéo de l'ADEME ressource Comment transformer nos déchets électroniques en or et autres métaux précieux
Un clin d'œil à la chimie du réveil et du coucher
Quand le soleil se lève…
La couleur bleue du matin éveille en nous la synthèse de multiples molécules chimiques et en particulier au niveau du cerveau de nombreuses molécules dites neuromédiateurs ou neurotransmetteurs. Il s’agit de petites molécules, lesquelles, une fois synthétisées dans les cellules, sont déversées dans le liquide intercellulaire (entre les cellules) pour transmettre des messages relatifs à l’éveil et au tonus (1).
Nos humeurs, notre équilibre affectif, notre appétit, nos motivations durant la journée en dépendent fortement. La sérotonine, la dopamine comme la noradrénaline en font partie (2). Un défaut en sérotonine ou en dopamine peut conduire à des pathologies graves comme, réciproquement, la dépression ou la maladie de Parkinson.
Les sources d’alimentation influencent aussi et pour beaucoup l’approvisionnement de l’organisme en ces deux neuromédiateurs : leur biosynthèse a lieu dans l’organisme à partir des acides aminés dits essentiels c’est-à-dire apportés par la nourriture. Il s’agit du tryptophane pour la sérotonine et de la phénylalanine pour la dopamine (3). Les protéines contenant le plus ces acides aminés sont celles issus du soja, des haricots secs, des lentilles, des graines de noix, œufs, légumes, fruits, poissons et viandes. Dans l’ensemble il faut privilégier plutôt les légumes secs, les lentilles, les noix et non une alimentation hyper-protéinée.
Quand le soleil se couche…
Le soleil tombant, la couleur rougeâtre va changer les processus physiologiques.
Ainsi et à titre d’exemple la synthèse de la sérotonine va être revue à la baisse et le surplus circulant va être transformé en mélatonine (melanas en grec=encre noire), l’hormone qui va progressivement nous conduire vers les bras de Morphée (4).
La lumière, le soleil et le crépuscule remplaceraient abondamment et qualitativement nos réveils électroniques grâce à la chimie et ses impulsions par le simple déclenchement des régulations naturelles. À quand les chambres à coucher rougeâtres la nuit tombante et bleues le soleil levant ?
La preuve de concept étant presque faite, allons plus loin et imaginons des peintures intelligentes dont «l’Homme » aurait grand besoin ! Ses humeurs, son énergie, ses dépressions, son efficacité, sa prductivité au travail et son bien-être ne pourraient que s’améliorer !!
Constantin Agouridas et l'équipe Question du mois de Mediachimie
[1] L’influx nerveux (message) est ainsi transmis à partir des cellules nerveuses (neurones) vers d’autres neurones ou vers d’autres cellules de l’organisme comme les muscles…
[2] Ces trois molécules sont des amines. Leurs formules sont :
sérotonine | dopamine | noradrénaline, isomère L (R) est seul concerné |
[3] La dopamine peut dans certaines circonstances trouver un autre précurseur endogène pour sa biosynthèse : la tyrosine. Il faut noter que la source de la tyrosine dépend aussi de la phénylalanine…
Pour ces 3 acides aminés, seuls les isomères L (S) sont impliqués.
L (S) phénylalanine | L (S) tryptophane | L (S) tyrosine |
[4]La mélatonine ou « hormone du sommeil » a pour formule
La sérotonine subit une acétylation de sa fonction amine et une méthylation de sa fonction phénol, par voie enzymatique, dans la glande pinéale ou épiphyse, selon :
Bien que la morphine, tire son nom de Morphée, cette molécule complexe, utilisée contre les douleurs intenses, n’est pas synthétisée au sein de l’organisme, mais extraite de l’opium. Elle n’appartient pas au cycle circadien.
On a trouvé des textes décrivant l’obtention de savon datant de – 3000 av. J.-C., mais son usage existe probablement depuis la préhistoire. Le mot sapo en gaulois a donné en français le mot savon.
Le savon à travers les siècles
À travers les siècles le mode de fabrication a toujours utilisé deux substances :
- un corps gras, une graisse animale (de bœuf, de mouton, de cochon ou de sanglier…) ou une huile végétale (d’olive, d’arachide, de coprah, de palme...)
- une base alcaline, présente dans les cendres issues de combustion de plantes ou de bois. Le produit basique présent dans les cendres est un carbonate de sodium ou de potassium (Na2CO3 ou K2CO3).
Pendant des siècles la fabrication est restée artisanale, avec les matières premières régionales aussi bien pour le corps gras que pour les cendres.
En 1823, le chimiste français Eugène Chevreul comprend la réaction qui se passe quand on chauffe ensemble la graisse et la base pour former le savon. Cette réaction est appelée saponification. Il identifie aussi la nature ionique des entités constituant les savons.
Quels sont les constituants des corps gras ?
Les corps gras sont des triesters naturels du glycérol appelés aussi triglycérides.
Ils sont formés à partir de glycérol de formule HOH2C-CHOH-CH2OH ( ) et d’acides dits « gras », RCOOH, où R est une très longue chaîne carbonée H3C-(CH2)n-, (n pouvant aller de 3 à 35 ) (1).
Par exemple le triester de l’acide palmitique a pour formule
La réaction de saponification
La réaction de saponification est réalisée de nos jours à l’échelle industrielle en chauffant des corps gras en présence de soude NaOH ou de potasse KOH. On obtient des ions carboxylates à longues chaînes carbonées (2).
Avec la soude on obtient des carboxylates de sodium donnant des savons durs et avec la potasse des carboxylates de potassium donnant des savons mous ou liquides.
On trouve dans le commerce un très grand choix de savons, du fait d’une très grande variété de matières premières parmi les corps gras naturels. Ainsi, il peut y avoir autant de savons « à l’huile d’olive » qu’il y a de variétés d’huiles d’olive !
Historiquement, une teneur de 72 % en masse d’acides gras était garantie dans le savon de Marseille traditionnel, uniquement préparé à partir d'huile d'olive.
Le rôle du savon
Dans l’ion carboxylate l’extrémité de la chaîne COO- est hydrophile (qui aime l’eau) et la longue chaîne R est lipophile (qui aime la graisse). Ces deux propriétés simultanées permettent d’ôter la graisse d’un vêtement, de la peau ou de tout objet et de l’entrainer avec l’eau(3).
En cette période propice aux virus, respectez les consignes de lavage des mains préconisées par « Santé publique France ». Le lavage des mains au savon permet par la friction et la formation de mousse de déloger la saleté et les virus, puis de les évacuer avec le rinçage. Mais le savon ne tue pas les virus ni les bactéries.
Françoise Brénon et l'équipe Question du mois de Mediachimie
(1) Les triglycérides ont pour formule générale
CH2-O-CO-R1 où R1, R2 et R3 sont des longues chaînes carbonées qui peuvent différer.
|
CH-O-CO-R2
|
CH2-O-CO-R3
(2) Par exemple, pour un corps gras avec la même chaîne R, la réaction de saponification a pour bilan
Le carboxylate de sodium a pour formule RCOO –, Na+
Le carboxylate de potassium a pour formule RCOO –, K+
(3) Schématiquement la molécule ionique de savon est représentée ainsi :
La tache de graisse va être emprisonnée par les queues lipophiles des molécules qui s’organisent autour d’elle en sphère, les parties hydrophiles étant en contact avec l’eau. L’ensemble est appelé une micelle.
Exemple d’une goutte d’huile piégée
L’hiver 2017/2018 est semble-t-il propice aux chutes de neige, les stations d’altitude se frottent les mains et les passionnés de ski se réjouissent lors des vacances de Noël et de février. Mais savez-vous comment se forme la neige et comment elle vieillit ?
La formation des cristaux
La vapeur d’eau issue de la basse atmosphère remonte avec les mouvements ascendants vers des altitudes élevées où règnent des températures basses. Au sein des nuages ayant une température largement en dessous de zéro, la vapeur d’eau se condense alors sous forme de très petites gouttes d’eau en surfusion (1) ou de microscopiques germes de glace : c’est la naissance du cristal. La vapeur d’eau continue à se condenser sur ces germes qui croissent d’une taille de quelques microns à quelques millimètres et donnent trois types de cristaux suivant la température à laquelle ils se forment : les étoiles - les plaquettes - les aiguilles.
Évolution de la neige
Soumis à différents paramètres (vent, température, pluie, soleil) les différents cristaux subissent des transformations continues et forment des couches variées au sol. Certaines sont dures, d’autres tendres. En observant la neige à la loupe binoculaire on distingue plusieurs formes de petits grains aux formes variées :
- grains fins en couches compactes : le vent a brisé les cristaux qui se redéposent en petites particules qui forment des rides comme le sable fin et des corniches sur les sommets ;
- grains à faces planes : il s’agit d’une vieille neige où les liaisons entre grains sont très faibles. Enfouie sous une neige fraiche elle est très fragile et peut déclencher une avalanche par plaque ;
- grains ronds : il s’agit là d’une neige qui a été mouillée sous l’effet du soleil ou de la pluie. Elle forme soit des couches molles si la température est douce et la neige contient de l’eau liquide, soit des couches dures si la neige a regelée : c’est la « neige de printemps ».
La neige et la glisse
Sur des skis on peut glisser sur la neige à des vitesses de plusieurs dizaines de mètres par seconde. La glisse est un phénomène compliqué (2). En fait on ne glisse pas sur la neige mais sur un film d’eau qui se crée entre la semelle du ski en polyéthylène (3) et la neige. Pour améliorer la glisse la structure de la semelle est semblable à un pneu pour bien évacuer l’eau et éviter le phénomène de succion qui freinerait le skieur. On peut aussi l’enduire de « fart » à base de paraffines et de molécules de fluorocarbures (4) hydrophobes.
Bon schuss !
L'équipe Question du mois
(1) La surfusion est un état de la matière qui demeure en phase liquide alors que sa température est plus basse que son point de solidification.
(2) Pour en savoir plus, allez découvrir l’article Les skis un équipement de haute technologie
(3) Le polyéthylène est formé à partir du monomère éthylène (ou éthène) de formule H2C=CH2
(4) Parmi eux le PTFE (polytétrafluoroéthylène), connu sous le nom commercial téflon© passé dans le vocabulaire courant. La formule de son monomère est : F2C=CF2
Source photos cristaux : site MétéoFrance, Phénomènes météo / La neige et ses transformations
Les bananes font partie des fruits qui murissent après cueillette.
Composition de la banane et de sa peau
La banane contient entre autres de la cellulose (1), des glucides (2), des lipides (3), des enzymes (4) et des polyphénols (5). Au sein des cellules il existe des compartiments, ce qui permet aux composés phénoliques de ne pas être en contact avec les enzymes présentes.
Altération de la peau et action du froid
Si les membranes des cellules sont altérées ou blessées, les enzymes et les polyphénols vont se trouver simultanément en contact entre eux et avec l’oxygène de l’air.
Cette altération peut avoir lieu par égratignure de la peau, par choc ou par refroidissement excessif. En effets les lipides des membranes des cellules végétales ajustent les proportions d’acides gras insaturés en fonction de la température. Si la température est trop basse la membrane devient trop fluide et perd son étanchéité. Alors enzymes et polyphénols peuvent se mélanger et réagir. La banane subit alors la « chilling injury » ou « blessure par refroidissement ». Pour ce fruit, on estime à 12,5 °C la limite au-dessous de laquelle il y a altération.
Les réactions mises en jeu dans le brunissement
En présence d’oxygène, les enzymes polyphénol oxydases (PPO) (6) permettent l’oxydation des phénols en quinone. Puis le processus se continue par une polymérisation en mélanine (7) qui est brune à noire.
Alors, comment éviter d’avoir des bananes avec des taches noires ?
- Achetez-les plutôt vertes
- Ne les mettez pas au réfrigérateur et ne les choquez pas
- Ne les stockez pas près d’autres fruits car ils émettent tous de l’éthylène qui accélère le murissement
Certains conseillent de les suspendre par la tige et de les envelopper dans un sac plastique pour éviter le contact avec l’oxygène. C’est un peu contradictoire avec l’atmosphère alors confinée qui contiendra de l’éthylène qui va continuer à les faire murir plus vite !
Dans de nombreux cas la lutte est dérisoire car hélas dans les grandes surfaces les fruits sont stockés dans des chambres froides et l’induction des réactions est déjà dans le fruit sur l’étal !
Vous voulez faire une salade de fruits ? Comment éviter le noircissement des bananes coupées ?
Les polyphénol oxydases étant inhibées par les acides, pour éviter que les rondelles de la banane coupée noircissent on peut les arroser avec du jus de citron ou de l’eau dans laquelle on a dissous un peu de vitamine C (acide ascorbique) (8). Ceci est aussi vrai pour les pommes.
Jean-Claude Bernier, Françoise Brénon et l'équipe Question du mois de Mediachimie
(1) La cellulose est un enchaînement linéaire de molécules de D-glucose. C’est le principal constituant de la paroi des cellules végétales.
D-glucose.
Source : https://fr.wikipedia.org/wiki/Glucose
(2) Le glucose est un exemple de glucide.
(3) Les lipides constituent la matière grasse de l’aliment.
(4) Une enzyme est une très grosse protéine jouant un rôle de catalyseur, c’est-à-dire qui est capable d’accélérer une réaction chimique.
Source : http://biochim-agro.univ-lille1.fr/brunissement/co/ch2_II_b.html
(6) Transformation d’un diphénol en quinone. La catécholoxydase est une PPO, métalloenzyme contenant du cuivre qui est le site d’interaction avec l'oxygène et le substrat phénolique.
Source : http://biochim-agro.univ-lille1.fr/brunissement/co/ch2_II_b.html
(7) La mélanine est une macromolécule brune.
(8) La vitamine C est identique à l’acide L-ascorbique. Le citron contient naturellement de l’acide citrique et de la vitamine C. L’acide inhibe l’enzyme. La vitamine C est un réducteur qui subit l’oxydation à la place des polyphénols, ce qui les conserve. On parle aussi de rôle « anti-oxydant » ou « anti-oxygène ». La vitamine C porte le nom de code E 300 parmi les additifs alimentaires.
Qui dans sa vie n’a pas vu en automne le jeu des couleurs magnifiques des feuilles de la majorité des arbres qui nous entourent ? Jaune de toutes les nuances, orange, rouge feu, rouge byzantin…
En effet l’arbre, n’ayant pas des moyens de déplacement, ne peut s’abriter pendant les mois rudes de l’hiver. Il a donc développé sa propre stratégie de survie contre le gel.
Il préfère sacrifier ses feuilles, celles qui occupent le plus de surface exposée, pour se protéger de la dessiccation et garder ses branches, tronc et racines. L’ensemble des structures restantes est protégée soit par l’écorce (branches et tronc) soit par la terre (racines).
La chimie de la chute
Aussitôt que la luminosité baisse et que les premiers froids paraissent, l’arbre, grâce à des molécules senseurs (réceptrices), va réaliser la venue de l’hiver ; l’ordre va être donné pour secréter une petite molécule hormone qui s’appelle éthylène (1), molécule bien connue par ailleurs de l’industrie pétrochimique.
La biosynthèse de l’éthylène va alors se réaliser grâce à une succession complexe d’étapes chimiques à partir de la méthionine (2), qui est un acide aminé essentiel pour la constitution des protéines.
L’éthylène va déclencher un deuxième mécanisme, celui de fabrication de « liège » autour des veinules ou artérioles qui amènent la sève (le sang des arbres) vers le feuillage pour le nourrir et l’hydrater ; un « bouchon » est formé qui empêche l’alimentation des feuilles (3). L’avenir de ces feuilles dépend désormais du vent… L’hiver s’installe mais la chimie de l’arbre lui a encore sauvé la vie, pour une nouvelle année.
Les changements de couleur
La chlorophylle (4), cette molécule responsable de la couleur verte intense et qui assure le processus de la photosynthèse (5), va être progressivement dégradée par le froid.
Le vert disparait pour laisser place à d’autres colorants, cachés jusqu’alors par la couleur verte. Ce sont les caroténoïdes (6) (substances chimiques de la carotte) ou les anthocyanines (substances chimiques des choux).
La danse des couleurs est amorcée ; tous les jours, à chaque instant de la journée et en fonction de la luminosité, des nuances variées régalent nos yeux.
Pourquoi certains arbres ne perdent pas leur feuillage ?
Le cas des conifères en est un exemple didactique.
Leur feuillage en forme d’aiguilles diminue substantiellement la surface d’exposition. Par ailleurs, il s’agit d’arbres résineux qui laissent autour de chaque aiguille une fine couche de résine qui sert de vêtement de protection, comparable à la cire secrétée par les canards qui nagent dans l’eau, indifféremment de la température ambiante.
La stratégie des plantes est une source d’émerveillement ! (7)
Constantin Agouridas, Françoise Brénon et l'équipe Question du mois de Mediachimie
(1) Éthylène ou éthène H2C=CH2
(2) La méthionine existe sous 2 structures, images l’une de l’autre dans un miroir. Par exemple la S-méthionine a pour formule :
(3) Ce processus s’appelle l’abscission.
(5) Dans le processus de photosynthèse, la chlorophylle absorbe l’énergie solaire afin de permettre au dioxyde de carbone et à l’eau, présents dans l’air ambiant, de se combiner pour produire des hydrates de carbone (sucre) et libérer du dioxygène.
(6) Caroténoïdes : Il s’agit d’une famille contenant environ 600 molécules différentes. Elles ont en commun de présenter une longue alternance de simples et doubles liaisons, responsable de leur couleur. Par exemple le lycopène a pour formule :
(7) C’est ainsi que certains arbres sécrètent de l'éthylène et d'autres gaz pour empêcher la végétation d'envahir leurs pieds et que sous stress thermique les arbres émettent de l'éthylène, d'où l'inflammation rapide et spectaculaire de l'arbre entier lors des incendies de forêt.
Les allumettes que nous utilisons tant en cette saison de barbecue sont bien pratiques et faciles à utiliser. Pourtant elles sont le fruit d’une longue histoire. Elles résultent de nombreuses recherches et industrialisations suivies d’améliorations pour les rendre sûres et non toxiques. Elles nécessitent une friction pour s’enflammer et pour que ce soit d’un usage utile il faut que cette flamme dure suffisamment longtemps. Mais quels sont donc les ingrédients mis en jeu pour que cela fonctionne ?
Les composés présents sur la surface à gratter
Le grattoir est constitué de poudre de verre et de phosphore rouge.
Le phosphore rouge est la variété allotropique (1) stable du phosphore, non inflammable et non toxique.
Les composés présents sur la tête de l’allumette
La petite tige de bois de peuplier est imprégnée de phosphate d’ammonium et son extrémité est recouverte de paraffine. Sur cette extrémité est déposée une pâte constituée à environ 50 % de chlorate de potassium (KClO3) (2), de trisulfure de diantimoine (Sb2S3) et de phosphate d’ammonium (NH4)3PO4, le tout lié par une colle. Le colorant présent est ajouté pour la rendre jolie !
Cette tête est appelée le « bouton » dans le processus de fabrication.
Que se passe-t-il lors du grattage, et après ?
La poudre de verre permet la friction provoquant un échauffement. Cette augmentation locale de température provoque la transformation du phosphore rouge en phosphore blanc (3). Celui-ci, très volatil et inflammable, s’enflamme immédiatement en présence du dioxygène de l’air. Cette étape sert à amorcer la flamme.
Celle-ci se communique alors à la tête de l’allumette.
Le chlorate, oxydant, se décompose sous l’effet de la chaleur de la flamme en chlorure et libère de l’oxygène selon KClO3 → KCl + 3/2 O2 (gaz)
Le trisulfure de diantimoine est un réducteur et sert de combustible, permettant ainsi à la flamme de se maintenir.
Il se forme simultanément du trioxyde de diantimoine et du dioxyde de soufre, responsable de l’odeur que l’on perçoit.
Les réactions mises en jeu sont :
Sb2S3 + 9/2 O2 → Sb2O3 + 3 SO2
ou globalement Sb2S3 + 3 KClO3 → Sb2O3 + 3 SO2 + 3 KCl
Et ce bel enchaînement de réactions ne dure que quelques dixièmes de secondes !
La cire de paraffine, qui est aussi un bon combustible, va permettre à la flamme de se propager le long de la tige de bois.
Quant au phosphate d’ammonium dont le bois est imprégné, il joue le rôle de retardateur de combustion afin que l’allumette ne brûle pas trop vite, et limite la formation des fumées lorsque l’allumette s’éteint.
La fabrication des allumettes en France a pendant plus d’un siècle été un monopole d’état (représenté par la SEITA). La dernière usine de Saintines dans l'Oise a fermé en 1993, elle fabriquait environ 15 milliards d'allumettes sur les 22 milliards consommées en France et consommait alors 8400 m3 de bois de peuplier. Depuis la consommation chute de 2 à 4% par an, concurrencée par les allume-gaz et les briquets.
Pour voir en images et au ralenti le processus d’inflammation d’une allumette tout en identifiant les réactions qui se passent, regardez la vidéo « How Do Matches Work ? » sur la chaine Youtube de l’American Chemical Society.
Françoise Brénon
(1) Une variété allotropique correspond à une forme cristalline ou moléculaire. Le phosphore rouge a un enchainement structural semblable à un polymère :
source http://www.compoundchem.com/2014/11/20/matches/
(2) On utilise du chlorate de potassium qui est non hygroscopique (absorbe peu ou pas l’humidité de l’air) contrairement au chlorate de sodium.
(3) Le phosphore blanc est une autre variété allotropique du phosphore . Sa structure découle d’une « dépolymérisation « du phosphore rouge et est :
source : https://fr.wikipedia.org/wiki/Phosphore_blanc
Il est très inflammable. On pourra lire à son sujet la ressource « Le phosphore et l’invention des allumettes ».