- Question du mois
mediachimie

Pourquoi économiser l’eau potable est-il aussi source d’économie d’énergie ?

Le 22 mars 2023 était la journée mondiale de l’eau qui met l'accent sur l'importance de l'eau douce. L’assemblée générale des Nations-Unies (1) soutient la réalisation de l'objectif de développement durable : eau propre
...

Le 22 mars 2023 était la journée mondiale de l’eau qui met l'accent sur l'importance de l'eau douce. L’assemblée générale des Nations-Unies (1) soutient la réalisation de l'objectif de développement durable : eau propre et assainissement, pour tous d'ici à 2030.

Si l’eau recouvre 72 % de la surface du globe, son volume étant estimé à 1400 millions de km3 (2), elle est à 97,2 % salée et présente dans les océans et les mers intérieures. Il y a donc 2,8 % d’eau douce sur la Terre mais seulement 0,7 % sont disponibles (nappes phréatiques et minoritairement lacs et rivières) pour les besoins vitaux. En effet le reste de l’eau douce se trouve sous forme de glace et neige. L’augmentation de la population mondiale et le changement climatique accentuent cette demande sur cette réserve limitée en eau douce.

Mais l’accès à l’eau douce ne suffit pas. Encore faut-il qu’elle soit potable. 1/4 de la population mondiale, soit 2, milliards de personnes, vit sans accès à l’eau potable. En France l’eau courante au robinet n’est pas une pratique si ancienne. Cosette (3) allait chercher l’eau de la rivière avec son seau. C’était aux environs de 1820 et cette eau n’était pas contrôlée. Il a fallu attendre 1930 pour que 30 % des communes en France aient un réseau d’approvisionnement en eau potable et ce n’est qu’en 1980 que la quasi-totalité de la population y a eu accès. En 2020, en France, la consommation moyenne en eau potable quotidienne est de 149 L/personne (4).

De la source au robinet : comment obtient-on de l’eau potable ?

Plusieurs procédés de production d’eau potable existent selon l’origine de la ressource : eau souterraine (nappes phréatiques), eau de rivière, eau de surface, eau de mer.

Il s’agit in fine de fournir une eau propre à la consommation, c’est-à-dire claire et exempte de virus et de bactéries et de toute matière organique naturelle ou issue de pollutions (médicaments, pesticides…).

Le traitement des eaux issues des nappes phréatiques d’eau douce accessibles ou des eaux de rivières suit globalement les étapes suivantes (5) : pompage de l’eau, stockage provisoire d’eau brute à traiter, dégrillage puis tamisage, dans certaines unités élimination d’une partie du calcaire contenue dans l’eau (décarbonatation) par précipitation puis filtration, pré-ozonation, filtrations sur argile, post-ozonation, filtration sur charbon actif puis chloration avant acheminement via les canalisations jusqu’à l’usager final. Il y a passage par les châteaux d’eau pour maintenir la pression dans le réseau de distribution. Une étape supplémentaire pour éliminer les nitrates pourra être nécessaire dans certaines régions à l’agriculture intensive.

La molécule d’ozone ou trioxygène, de formule O3, est un gaz instable, donc produit sur le site de traitement de l’eau par décharge électrique (arc électrique) dans le dioxygène (6). L’ozone a un très fort pouvoir oxydant et est virucide et bactéricide. Il participe aussi à l’élimination des odeurs.

La pré-ozonation utilise de l’ozone faiblement concentré et permet de déstructurer les particules colloïdales et les macromolécules et d’oxyder le fer et le manganèse dans les eaux souterraines peu chargées en matière organique. Dans la post-ozonation, sa concentration est plus forte et le temps de contact plus long. Elle permet la destruction des molécules organiques.

La filtration sur charbon actif, permet in fine la rétention des micro-résidus issus de la post ozonation. Puis, l’eau de Javel (7) est utilisée pour l’étape dite de « chloration ». Cette chloration est nécessaire pour maintenir l’absence de virus et bactéries tout au long des kilomètres du réseau. L’ozone ne pourrait pas remplir ce rôle car, trop instable, elle ne reste pas dans l’eau contrairement à l’eau de Javel. Il y a toutefois des points de contrôles régulièrement répartis sur le réseau afin de réajuster si nécessaire sa concentration.

Toutes ces étapes consomment de l’électricité.

Le traitement de l’eau de mer

Avant de la rendre potable il faut préalablement ajouter l’étape de désalinisation. Deux procédés existent : la distillation et l’osmose inverse. Ces procédés consomment beaucoup d’énergie. L’osmose inverse est majoritairement préférée de nos jours car moins gourmande en énergie.

Le procédé d’osmose inverse nécessite l’usage d’une membrane semi-perméable (8) séparant deux compartiments, dont l’un d’entre eux contient l’eau de mer salée. Il faut alors exercer dans ce compartiment une pression supérieure à la pression osmotique (9), ce qui force alors l'eau à passer, via la membrane semi-perméable, dans l’autre compartiment où l’eau pure qui s’y accumule est sans sel. Dans la pratique la pression exercée évolue entre 50 et 70 bars. De nombreuses recherches ont lieu pour diminuer le coût énergétique et passent par l’amélioration de la perméabilité de la membrane permettant d’abaisser la pression à exercer, tout en conservant sa sélectivité. De grand espoirs sont mis dans des membranes biomimétiques hautement sélectives (10).

Près de 100 millions de m3 d’eau par jour sont produits par dessalement d’eau de mer, dans environ 15 000 installations situées dans 150 pays.

Une fois dessalée, l’eau doit être potabilisée selon les étapes préalablement citées. Il est aussi souvent nécessaire de réintroduire quelques sels minéraux pour la rendre consommable.

Du lavabo à la rivière : comment traite-t-on les eaux usées ?

Les eaux usées sont les eaux que nous rejetons vers les égouts, quand on fait la vaisselle et le ménage, quand nous nous lavons, quand nous allons aux toilettes… Il s’agit de dépolluer ces eaux usées, avant de les rejeter dans la rivière. Mais attention, cette eau dépolluée n’est pas potable.

Il est nécessaire dans un premier temps de séparer les matières en suspension des eaux usées.  Après une étape de décantation qui permet de séparer l’eau à traiter des huiles et graisses qui surnagent et des sables et solides plus denses, l’eau sale subit un traitement biologique aérobie. Des bactéries et micro-organismes naturels « digèrent » les contaminants organiques en présence de l’oxygène de l’air.

Ces traitements biologiques sont très efficaces, très résistants aux variations de température et peuvent être utilisés efficacement dans presque tous les climats. L’eau ainsi dépolluée est rejetée à la rivière.

Dans certaines unités, l’eau peut, avant rejet à la rivière, subir une ultrafiltration membranaire. Une membrane perméable est constituée d’un tube souple présentant des micro-perforations, jouant le rôle de filtre, capables de retenir des protéines ayant une taille de 0,03 µm. L’eau et les ions monovalents (comme les ions sodium et chlorure), ainsi que les ions divalents comme les ions calcium ou manganèse passent la barrière de la membrane avec l’eau. L’eau rejetée à la rivière a alors la qualité d’une eau de piscine.

Par ailleurs les boues issues du traitement biologique peuvent subir un traitement anaérobie, produisant du méthane, CH4, nommé biogaz, source d’énergie. Ainsi les unités d’épuration des eaux usées, tendent de plus en plus à être autonomes en énergie.

Comment recycler les eaux usées ?

On peut l’envisager pour l’irrigation et le nettoyage de la voirie par exemple. Aujourd’hui seulement 0,6 % des eaux usées sont réutilisées en France alors qu’en Italie le pourcentage est de 8 %, 14 % en Espagne et 84 % en Israël.

Aux Sables d’Olonne en Vendée vient de démarrer la construction d’une usine de recyclage des eaux usées afin d’obtenir de l’eau potable, dans le cadre du programme Jourdain (11). Cette usine est une usine pilote pour la France et pour l’Europe. Le nom Jourdain est à la fois inspiré du fleuve Jourdain et du Bourgeois gentilhomme de Molière ! (12)

Cette usine sera connectée à la station d’épuration voisine et l’eau sera nettoyée en cinq étapes : ultrafiltration, osmose inverse, traitement aux UV qui élimine les microbes pathogènes avec une fiabilité de 99,99%, puis une chloration à l’eau de Javel, une filtration et enfin une reminéralisation (13).

Eau et Énergie : l’interdépendance

Comme on vient de le voir, l’ensemble du cycle de l’eau consomme de l’énergie, du pompage à l‘épuration. Cela représente 2 à 3 % de l’énergie mondiale utilisée. Dans les zones urbaines, 1 à 18 % de l’électricité sont utilisés pour traiter et transporter les eaux potables et usées.

La figure 1, indique des fourchettes de valeurs concernant la consommation en électricité des différentes opérations décrites précédemment tout au long du cycle de l’eau. Selon les cas de figure, le captage, la potabilisation, la distribution, la collecte et l’épuration de 1 m3 nécessitent entre 1,8 et 9,5 kWh.

 
Figure 1 : Besoins en électricité dans le cycle de l’eau. Source : Eau et énergie sont indissociables p. 12 (14) 

La consommation énergétique dépend également de la nature de l’eau à traiter. Dans le tableau 1, les trois premières lignes concernent des eaux brutes toutes distribuées sans être embouteillées.

 
Tableau 1 : Consommation énergétique en fonction de l’eau à traiter. Source : Eau et énergie sont indissociables p. 12 (14) 

Concernant l’eau en bouteille : il s’agit d’eaux minérales ou de source (15), issues d’eaux souterraines, microbiologiquement saines, et non traitées. Leur impact énergétique très élevé provient majoritairement des matières premières et de l’énergie nécessaires à la fabrication des bouteilles.

On retiendra donc que « Économiser l’eau revient à économiser aussi l’énergie ».

 

On peut identifier trois axes principaux pour réduire la consommation d’énergie dans le cycle de l’eau :

  • développer de nouveaux concepts de stations d’épuration permettant de récupérer la chaleur et de produire de l’électricité́ à partir du biogaz ;
  • mettre au point des membranes d’ultrafiltration et d’osmose inverse moins énergivores ;
  • identifier tous les moyens de récupération de l’énergie consommée par les mises en pression au sein des procédés.

L’eau est essentielle à la vie. Il n’existe pas de substitut. Si l’énergie peut être renouvelable, l’eau n’est pas renouvelable ; depuis l’époque des dinosaures, la quantité́ d’eau douce sur la Terre n’a pratiquement pas évolué́. Il convient donc de la réutiliser au maximum. L’accroissement de la population, l’augmentation des standards de vie, la production de nourriture et l’industrialisation sans cesse croissante, engendrent une pression sur les ressources en eau qui n’a fait que croitre au cours des décennies. De plus, la pollution et la contamination des ressources en eau douce ont comme conséquence une diminution continue des réserves de qualité́ disponibles.

On notera qu’en France il existe un seul réseau de distribution d’eau à savoir d’eau potable et qu’il faut donc impérativement l’entretenir pour éviter les fuites (estimées à 20 %, soit pour 5 litres d’eau mis en distribution, 1 litre d’eau revient au milieu naturel sans passer par le consommateur) (16), ce qui est considérable. Et pour les citoyens que nous sommes, faisons tous ces petits et grands gestes pour ne pas gâcher l’eau (17).

Françoise Brénon et Odile Garreau

 

 

(1) Journée mondiale de l’eau des Nations-Unies
(2) L’Eau dans l'Univers, sur le site Eau France, le service public d'information sur l'eau
(3) Les Misérables de Victor Hugo
(4) Le service public d'information sur l'économie de l'eau
(5) Pour mieux comprendre ces étapes, consultez la fiche Chimie et… en fiches L’eau, une ressource indispensable pour la ville de A. Charles, A. Harari et J.-Cl. Bernier (Mediachimie.org) et le Memento degremont® Procédés et technologies  (SUEZ)
(6) Pour en savoir plus sur l’obtention de l’ozone, voir le Memento degremont® Génération de l’ozone (SUEZ) et sur l’ozone en général, la question du mois L’ozone : bon ou mauvais ? L. Amann (Mediachimie.org)
(7) L’eau de Javel est une solution basique contenant les ions hypochlorite ClO-. Compte tenu du pH de l’eau distribuée, qui est proche de 7,5, il y a coexistence de l’ion ClO- et de la molécule d’acide hypochloreux HClO qui est le composé le plus virucide et bactéricide des deux, car non ionique il traverse plus facilement la membrane cellulaire. L’eau de Javel : sa chimie et son action biochimique,  de G. Durliat, J.-L. Vignes et  J.-N. Joffin, Bulletin de l'Union des physiciens, n° 792, vol. 91 (mars 1997)  pp. 451-471
(8) Une membrane semi-perméable laisse passer l’eau mais pas les ions plus gros que la molécule d'eau, comme le sont les ions sodium Na+ et chlorure Cl-.
(9) La pression osmotique correspond à la différence des pressions exercées de part et d'autre d'une membrane semi-perméable par deux liquides contenant des ions de concentrations différentes.
Pour en savoir plus : L’osmose inverse, de J. Nahmias L’Actualité chimique n° 404 (février 2016) pp. 63-64
(10) Les canaux artificiels d’eau : des membranes biomimétiques pour le dessalement, de M. Barboiu, L’Actualité chimique n° 470 (février 2022) pp. 33-34
(11) Le Programme Jourdain sur le site Vendée Eau
(12) Le nom du programme évoque le fleuve Jourdain qui traverse Israël. Sa ressource partagée par les pays qui le bordent devient limitée. Israël est devenu un modèle pour sa réutilisation de plus de 90% de son eau potable et 50 % de son eau recyclée est consacrée à l’arrosage des terres cultivées.
Le nom fait aussi référence au Bourgeois gentilhomme ! Voir le Programme Jourdain sur le site de Veolia
(13) Pour en savoir plus consulter la fiche Chimie et… en fiches L’eau, une ressource indispensable pour la ville (figure2) de A. Charles, A. Harari et J.-Cl. Bernier (Mediachimie.org)
(14) Conférence et ressource Eau et énergie sont indissociables, de M. Florette et L. Duvivier, Colloque Chimie et enjeux énergétiques, Fondation de la Maison de la chimie (2012).
(15) Eaux conditionnées sur le site du Ministère, de la santé et de la prévention
(16) Rendement des réseaux d’eau potable, statistiques de 2012, sur le site Eau France, le service public d'information sur l'eau
(17) Consulter Comment économiser l’eau dans mon logement ?, sur le site Tout sur mon eau (SUEZ)

 

Crédit illustration : PublicDomainPictures/Pixabay

- Question du mois
mediachimie

Comment les retardateurs de flamme (RF) minimisent-ils les risques d’incendie ?

Depuis toujours la sécurité incendie a été la préoccupation des sociétés. Dès le XVIe siècle, les tentures des théâtres parisiens ont été traitées pour les rendre ininflammables. Mais c’est Gay-Lussac qui a publié en 1821
...

Depuis toujours la sécurité incendie a été la préoccupation des sociétés. Dès le XVIe siècle, les tentures des théâtres parisiens ont été traitées pour les rendre ininflammables. Mais c’est Gay-Lussac qui a publié en 1821 les premiers travaux scientifiques avec une note sur la propriété qu’ont les matières salines de rendre les tissus incombustibles (1).

Les feux de forêt souvent décrits dans les médias résultent de la combustion de l’élément carbone du bois. Le bois est un biopolymère composite tridimensionnel constitué de trois polymères de type polyglycoside : la cellulose (50%), l’hémicellulose (25%) et la lignine (25%). La combustion libère du dioxyde et du monoxyde de carbone (CO2 et CO), mais aussi des composés organiques volatils (COV), tels que des dérivés benzéniques ou terpéniques, qui sont très inflammables au contact de l’oxygène de l’air. De tout temps on a arrosé les feux avec de l’eau qui en se vaporisant chasse l’air et prive ainsi le feu en oxygène tout en faisant baisser la température. Peu à peu des additifs ont été ajoutés pour retarder les combustions et la propagation des flammes, ils sont appelés retardateurs de flamme (RF). Ils sont aussi ajoutés dans l’eau lors des largages aériens (2).

Pour protéger le bois des agressions extérieures (humidité, UV, champignons, insectes…), des revêtements ont été réalisés avec des peintures et des vernis. Ceux-ci contiennent des liants qui sont des polymères notés ici généralement R1H donc constitués principalement d’éléments réducteurs comme l’hydrogène et le carbone, et qui peuvent rendre inflammables ces polymères en présence d’une source de chaleur et de l’oxygène de l’air. Il est donc ajouté des RF aux peintures et vernis. De même des RF sont en général utilisés dans de nombreux plastiques de la vie courante pour atteindre des propriétés ignifugeantes reconnues.

Qualitativement on évoque les étapes suivantes quand un polymère brûle :

  • i) l’échauffement qui pour les thermoplastiques les ramollit et les fait fondre contrairement aux thermodurcissables à réseau 3D réticulés qui se ramollissent peu ou pas.
  • ii) la décomposition : au-delà d’une température critique, les liaisons se cassent pour former notamment des radicaux H. et O., engendrant des molécules organiques plus légères et inflammables.
  • iii) l’inflammation : qui dépend de la cinétique des décompositions des polymères, et des concentrations en dioxygène (O2) et en COV. L’inflammation se perpétue tant que la combustion des polymères continue pour générer des gaz combustibles (3).

Les modes d’action des RF sont présentés comme suit :

  • i) « empoisonner » la phase gazeuse en inhibant les réactions radicalaires par des réactions de transfert ou de recombinaison. Les premiers RF étaient des dérivés halogénés notés RX, qui conduisent aux équations de réaction : RX + R1H → R – R1 + HX
  • L’hydracide HX formé a un rôle inhibiteur vis-à-vis des radicaux H. et HO., qui sont présents dans la flamme selon les équations suivantes : HX + H. → H2 + X. et HX + HO. → H2O + X.
  • ii) refroidir et protéger le polymère en ajoutant des hydroxydes métalliques d’aluminium ou de magnésium. Ils doivent être incorporés en grande quantité (60% en masse !) pour avoir une efficacité notable mais ceci entraîne une perte sensible des propriétés mécaniques du polymère. Leur décomposition vers 200 °C s’accompagne de la formation respective d’oxydes d’aluminium ou de magnésium ce qui constitue une couche protectrice ralentissant la dégradation du polymère ; c’est l’étape dite de la céramisation.
  • iii) le matériau, chauffé au-delà d’une certaine température critique se gonfle en donnant une barrière alvéolaire, susceptible de protéger le polymère : c’est l’étape d’intumescence.

Ceci nécessite alors des formulations précises avec principalement trois composés :

  • a) d’abord une source acide avec souvent des phosphates d’ammonium (par exemple (NH4)3PO4) qui chauffés vers 200°C, se décomposent en ammoniac gazeux et en acide phosphorique ce qui conduit à un pH acide (i) voisin de 2, hydrolysant alors les liaisons chimiques du polymère ;
  • b) ensuite une source de carbone apportée par des sucres (ex : le maltose) ou des polyholosides (ex : l’amidon) et susceptibles de « charbonner » c’est à-dire conduisant à un résidu de carbone (appelé char) ;
  • c) enfin un agent gonflant de type azoté (par exemple la guanidine de formule (NH2)2 C=NH) qui par chauffage se sublime pour donner un dégagement gazeux d’ammoniac provoquant l’expansion du char. De même l’ammoniac libéré par la décomposition du phosphate d’ammonium participe au gonflement.

 

  • iv) des nanocomposites (de dimension inférieure à 100 nm) incorporés dans le polymère à des taux inférieurs à 10%, se sont révélés avoir des propriétés de tenue au feu remarquables : des argiles de type montmorillonite ou des nanoparticules d’oxyde de titane, de silice, des nanotubes de carbone par exemple ont été ainsi utilisés pour réduire de l’ordre de 50 % le risque d’inflammation du polymère (3).

Des normes de performances des RF ont été établies principalement par des mesures de calorimétrie : d’extinction de flamme (ISO 4589), d’inflammabilité (ISO 5660), de propagation de flamme (ISO 5658-2). Ces mesures sont utiles pour une approche prescriptive en particulier dans les secteurs du bâtiment, des transports publics (trains, avions, bateau…) mais aussi pour aider la recherche des causes des sinistres et valider les logiciels de simulation des incendies. Les mesures au calorimètre précisent le débit calorifique, soit le flux d’énergie thermique dégagée lors de la combustion du matériau. La technique consiste à mesurer la consommation en oxygène car la chaleur dégagée par la combustion est proportionnelle à la quantité d’oxygène correspondante. Le principe est simple : la combustion est provoquée dans un volume de contrôle et les effluents gazeux sont collectés via une hotte vers un conduit d’extraction dans lequel ils sont analysés (4).

Les RF peuvent dégager des fumées toxiques pour l’environnement et la santé humaine par migration et lessivage des produits lors de températures élevées et dans des atmosphères humides (5-6). Plus de 40 % des matières plastiques produits en Europe renferment des additifs de type RF. Leurs propriétés chimiques sont décrites sur le site européen ECHA. Parmi les 69 RF utilisés en Europe, 12 d’entre eux sont en cours de réévaluation de toxicité, notamment les dérivés bromés. Par ailleurs des RF contenus dans des polymères usagés sont triés par flottation (différence de densité) et détectés par transmission aux rayons X. Des unités encore au stade de pilote sont en cours pour fabriquer de nouveau des polymères ignifugés (7) ! Des normes de toxicité spécifiques sont éditées notamment dans les transports ferroviaires (8).

Pour obtenir des matériaux polymères possédant des RF, il faut créer des liaisons fortes entre le matériau polymère et les RF. Des travaux récents (2022) de M. Denis et al., de l’université de Montpellier, ont permis de mettre au point la synthèse d’un oligomère protégeant le bois, aux propriétés encore plus respectueuses de l’environnement. Il s’agit de la réaction d’un dérivé phosphoré fonctionnalisé avec un motif vinyle silane (de formule générale CH2 = CH -SiMe3) conduisant à une résine. Des peintures formulées avec ces résines modifiées ont été évaluées au calorimètre à cône et ont montré d’excellentes propriétés ignifugeantes : un bois recouvert d’un vernis, contenant 30% de cet oligomère, présente une réduction du dégagement de chaleur maximum de plus de 55 % (9)!

Jean-Pierre Foulon

(i) L’équation de réaction mise en jeu lors du chauffage s’écrit : (NH4)3PO4 → 3 NH3 (g) + H3PO4

 

Pour en savoir plus :
(1) Note sur la propriété qu'ont les matières salines de rendre les tissues incombustibles, de L.J. Gay-Lussac, Annales de Chimie et de Physique (1821), T. 18, p. 211-218 (consultable sur GALLICA), la bibliothèque numérique de la BNF et de ses partenaires
(2) La chimie des feux de forêt, de J.-C. Bernier, éditorial (30/08/2018), site Mediachimie.org
(3) Retardateurs de flamme et polymères des propriétés fonctionnelles, communication personnelle (2023) de S. Bourbigot et G. Fontaine (École Centrale-Lille) 
(4) La calorimétrie des procédés et de la sécurité, de F. Stoessel, L'Actualité chimique (Juin 2019) N°&nbs^p;441, p 28
(5) Retardateurs de flamme sur le site Wikipedia
(6) Propriétés dangereuses des retardateurs de flamme dans les plastiques, Rapport d’appui de l’INERIS (du 4 /12/2021)
(7) Site ECHA ( rechercher flame retardant)
(8) Réaction et résistance au feu des matériaux composant les trains EN 45545-2 et EN 45545-3 sur le site CREPIM
(9) Des résines alkydes hydrides aux propriétés ignifugeantes pour la formulation de revêtements, de M. Denis, L'Actualité chimique (Mai-Juin 2023) N° 484-485, p. 78
 

Crédit illustration : Hans/Pixabay

- Question du mois
mediachimie

Avec quels matériaux sont fabriquées les éoliennes et comment les recycler ?

Comment fonctionne une éolienne ?L’éolienne ou « aérogénérateur » est la version moderne du moulin à vent dont l’utilisation remonte au 7e siècle en Asie Mineure. Son nom vient d’Éole, « dieu du vent, vif, rapide,
...

Comment fonctionne une éolienne ?

L’éolienne ou « aérogénérateur » est la version moderne du moulin à vent dont l’utilisation remonte au 7e siècle en Asie Mineure. Son nom vient d’Éole, « dieu du vent, vif, rapide, inconstant ».

Elle transforme l’énergie cinétique du vent - gratuite, renouvelable mais intermittente - en énergie mécanique. Celle-ci est ensuite convertie en énergie électrique via un alternateur. Par exemple dans une éolienne à entrainement direct, le vent agit sur des pales qui entraînent la rotation d’un axe (ou arbre) sur lequel est fixé un aimant cylindrique, lui-même placé au sein d’un bobinage en cuivre (stator), ce qui induit une tension électrique aux bornes de celle-ci.(i)

Cette électricité est ensuite acheminée à l'aide de câbles conducteurs vers le lieu de stockage ou d’utilisation.

L’alternateur transforme l’énergie mécanique (rotation d’une roue sous l’effet d’un courant liquide ou gazeux) en énergie électrique. C’est l’élément de base des centrales électriques à charbon, gaz ou pétrole ainsi que des centrales nucléaires et des éoliennes. Source : De la force musculaire aux énergies renouvelables in La chimie, l'énergie et le climat, collection Chimie et... Junior, EDP Sciences, Fondation de la Maison de la Chimie (2017) p. 29

Quels éléments constituent une éolienne ?

Une éolienne comporte 3 parties principales :

  • Une tour (ou mât) qui élève le système dans les zones ventées. Elle est en acier et/ou en béton, solidement ancrée dans le sol ou dans les fonds marins s’ils sont peu profonds au voisinage des côtes. Il existe aussi désormais des éoliennes flottantes en pleine mer (offshore) ancrées aux fonds marins par des câbles.
    Le mât peut atteindre plus de 100 m de hauteur et ses fondations accueillent une masse de béton d’environ 600 à 800 tonnes (95% du poids de l’éolienne…).
  • Les pales (au nombre de deux ou trois) qui tournent sous l’action du vent peuvent avoir de 25 à 50 mètres de long. Elles doivent donc être mécaniquement solides, légères et résistantes à la corrosion. C’est pourquoi, pour pouvoir les mouler, elles sont fabriquées jusqu’à ce jour dans un matériau composite thermodurcissable(ii), qui répond à ces contraintes et qui est constitué de fibre de carbone ou de fibre de verre piégées dans une résine(iii) époxy ou polyester(iv). Malheureusement les polymères thermodurcissables ne sont pas recyclables. De nouvelles résines à caractère thermoplastique et recyclables voient le jour(v).
  • La nacelle qui est le cœur de la machine. Elle abrite tous les composants essentiels qui transforment l'énergie cinétique du vent, en énergie mécanique de rotation et in fine en électricité.
    On y trouve :
    • Un système mécanique d’engrenages et de moyeux pour la transmission et l’accélération de la rotation produite par le vent.
    • L'alternateur ; certains des aimants permanents utilisés contiennent au moins un des éléments magnétiques suivants : fer, cobalt ou nickel, alliés à des métaux de terres rares (néodyme, dysprosium, samarium).
      L’alliage à base de fer, néodyme et bore, noté FeNdB (de formule exacte Nd2Fe14B) est un exemple d’aimant puissant. À ce jour, l’usage de ces aimants puissants concerne essentiellement les éoliennes en mer, avec la technologie synchrone à entrainement direct et seulement 6,2% des éoliennes terrestres françaises recourent à celle-ci(vi). Les câbles pour injecter l’électricité produite dans le réseau ou pour la stocker via des stations de transfert d’énergie par pompage (STEP) ou dans des batteries.

Pourquoi et comment recycler une éolienne ?

La durée de vie moyenne est de 25 ans. Les plus anciennes éoliennes installées sont déjà en bout de course et doivent être remplacées.

La réglementation de plus en plus contraignante exige, lors d’un démantèlement, la remise en état des lieux d’implantation et le recyclage des matériaux au-delà de 90%.

Étant donné le développement attendu des parcs éoliens sur terre et en mer, le recyclage des éoliennes en fin de vie doit largement se développer, entre autres pour économiser les matières premières nécessaires.

Le prix de revient d’une éolienne industrielle de 5 MW est estimé à 5 millions d’euros, soit 1 million par MW. Ce coût élevé justifie la récupération et le recyclage des constituants.

Récupération du béton ou de l’acier

Elle est déjà opérationnelle, car le béton et l’acier sont présents en grande quantité dans maintes autres productions.

Les parties métalliques comme le mât (s’il est en acier) et le rotor (axe solidaire des pales) se recyclent sans problème dans les filières existantes. La valeur marchande de ces métaux justifie le démontage d’une éolienne.

Le béton, composé de ciment, d'eau, de sable et de gravillons, peut parfaitement être concassé ou broyé et réutilisé pour former de nouvelles briques, éléments de construction ou revêtements de route.

Pour les métaux tels que le cuivre, leur récupération et recyclage sont largement répandus.

Les problèmes se posent avant tout pour les pales et certains aimants et la recherche se concentre sur leurs recyclages.

Les aimants permanents

Actuellement, la technologie avec aimants permanents contenant des terres rares reste modeste en France(vii). Mais les quantités à recycler bien que minimes sont précieuses.

Ces terres rares proviennent majoritairement de Chine et leur coût est croissant. Toutefois l’exploitation de nouvelles sources se développe ailleurs, pour s’affranchir de cette dépendance(viii). Par ailleurs, leur extraction est très polluante et elles ont des propriétés physico-chimiques très voisines, rendant leur séparation difficile (dissolution sélective dans des solvants organiques).

Les aimants permanents sont actuellement traités par un procédé de décrépitation à l’hydrogène(ix) qui fournit une poudre qui présente une faible teneur en oxygène, réutilisable pour obtenir des aimants par frittage.

Un nouveau procédé chimique propose une alternative en remplaçant l’hydrogène par l’eau. Les aimants sont mis en contact avec de l’eau sous des pressions et températures modérées, ce qui conduit à la pulvérisation de l’aimant et permet une réutilisation des grains magnétiques.

Enfin, les grandes entreprises de l’éolien cherchent à développer des aimants de nouvelle génération pour s’affranchir de l’usage des terres rares.

Les pales

Le démontage et le transport des pales sont complexes. Comme le broyage et l’enfouissement ne sont plus autorisés, leur recyclage se limite pour l’instant au réemploi, par découpage ou usinage, des résines très solides qui les composent, ce qui fournit mobilier urbain, bouches à incendie, abris de vélos ou de bus, jeux de plein air, etc.

Cependant la recherche en matériaux développe une pale d’éolienne 100% recyclable, en composite fibres de carbone ou de verre piégées dans une résine thermoplastique(x). La méthode chimique de recyclage utilisée consiste alors dans un 1er temps à séparer la fibre de verre de la résine par fusion de celle-ci, puis à la dépolymériser complétement afin de récupérer les monomères purs qui permettront une nouvelle synthèse du polymère. Les tests grandeur nature sont en cours, en particulier sur les propriétés mécaniques de ce nouveau composite(xi). Dans le cas des fibres de carbone coûteuses et de plus en plus utilisées, des technologies sont mises en œuvre pour les récupérer(xii).

Conclusion

Le rendement d’une éolienne varie de 30 à 50% voire 65% de sa puissance théorique (en fonction de son implantation, de la taille des pales, de la force et des fluctuations du vent) ; l’éolienne fonctionne pour des vitesses du vent comprises entre 11 et 90 km/h.

L’énergie éolienne est la troisième source d'électricité décarbonée en France, (derrière les énergies nucléaire et hydraulique)(xiii). Elle est appelée à jouer un rôle majeur dans la transition vers des énergies décarbonées. Toutefois, l’obtention de l’acier et du béton nécessaires à sa construction et le démantèlement sont sources d’émission de dioxyde de carbone : en moyenne 14 g de CO2 par kWh pour l’éolien comparés à 4 g pour l’hydraulique, 16 g pour le nucléaire, 48 g pour le photovoltaïque, 469 g pour le gaz naturel et jusqu’à 1000 g pour le charbon(xiv).

On comprend donc la nécessité de bien choisir les matériaux et matières premières nécessaires à la construction des éoliennes et à leur fonctionnement optimal tout en ayant prévu dès leur conception le procédé de recyclage en fin de vie.

Andrée Harari et Françoise Brénon

 

 

(i) Il y a plusieurs types d’éoliennes : celles à entrainement direct dites synchrones, avec un rotor constitué d’aimants permanents et les asynchrones avec un rotor bobiné en cuivre, sans aimant, utilisées pour les éoliennes terrestres où l'entretien et révision sont plus faciles qu'en mer. Pour en savoir plus sur le fonctionnement d’une éolienne sans aimant, on consultera la ressource très pédagogique du blog de Timo van Neerden.
(ii) Un polymère thermodurcissable a une structure moléculaire tridimensionnelle, demeure à l’état solide une fois durci et sa forme ne peut alors plus être modifiée. Il ne peut pas être refondu.
(iii) On appelle résine le mélange liquide contenant des additifs et le ou les monomères réactifs initialement dilués.
(iv) Les composés de type époxy sont à base de Bisphénol A et les polyesters sont de type orthophtalique.
(v) On peut citer par exemple la résine Elium® de Arkema, à base de polyacrylate. Voir la fiche de préparation au Grand oral – Mediachimie/ Nathan « Quel rôle joue la chimie pour les matériaux stratégiques ? »
(vi) Selon un avis technique de l’Ademe datant d’octobre 2020, 6,2% des éoliennes terrestres françaises recouraient à cette technologie, soit 372 tonnes d’aimants permanents contenant 122 tonnes de néodyme et 17 tonnes de dysprosium. Les éoliennes asynchrones avec boites de vitesse n’utilisent pas d’aimant mais nécessitent plus d’entretien.
(vii) Terres rares, énergies renouvelables et stockage d'énergies Librairie Ademe
(viii) Ressources déjà connues au Brésil, au Viet Nam, en Russie, en Inde, en Australie… Nouveau gisement découvert en Laponie.
(ix) Décrépitation : l’aimant est placé sous hydrogène, qui diffuse et forme des poches qui font exploser la structure. La poudre obtenue est ultérieurement broyée et réutilisable pour obtenir des aimants par frittage.
(x) Un polymère thermoplastique est rigide à l’état solide mais se ramollit à la chaleur et peut être durci à nouveau.
(xi) Projet ZEBRA piloté par l’IRT Jules Verne et un consortium d’acteurs majeurs de l’industrie, dont Arkema, Corning…
(xii) Que faire des pales d’éoliennes ?, J.-C. Bernier, éditorial (Mediachimie.org)
(xiii) Pour avoir une idée des productions d’énergie par l’éolien, dont les valeurs évoluent régulièrement, on pourra consulter les sites suivants : pour 2019 EDF l’éolien en chiffres 34,1 TWh représentant 6,3% de la production d’électricité et pour 2022 Ministère de la transition écologique avec 25,0 TWh au cours des trois premiers trimestres 2022, soit 7,4% de la consommation électrique française. Et le Vrai / faux sur l’éolien terrestre
(xiv) Rapport ADEME 2015- page 7- Impacts environnementaux de l'éolien français
 

 

Pour aller plus loin

Que faire des pales d’éoliennes ?, J.-C. Bernier, éditorial (Mediachimie.org)
De la force musculaire aux énergies renouvelablesin La chimie, l’énergie et le climat, collection Chimie et junior (EDP Sciences, 2017) p. 29 à 31
Les enjeux matériaux pour la fabrication et le recyclage des éoliennes, Frédéric Petit (Siemens), résumé et conférence Colloque Chimie et matériaux stratégiques (9/11/2022)
Chimie métallurgique pour résoudre les problèmes des métaux rares, J.-C. Bernier, résumé et conférence Colloque Chimie et matériaux stratégiques (9/11/2022)

 

Crédit illustration : EdWhiteImages/Pixabay

- Question du mois
mediachimie

Pourquoi la vitamine C est-elle indispensable ?

La première chose à savoir est que nous ne sommes pas capables de synthétiser la vitamine C (i). Nous devons donc la trouver dans l’alimentation : les fruits colorés (agrumes, cassis, fraise, kiwi, ananas...) et les
...

La première chose à savoir est que nous ne sommes pas capables de synthétiser la vitamine C (i). Nous devons donc la trouver dans l’alimentation : les fruits colorés (agrumes, cassis, fraise, kiwi, ananas...) et les légumes frais (poivron, brocoli, chou de Bruxelles...). L'apport nutritionnel quotidien conseillé est d'environ 100 mg chez l'adulte. Comme elle est très fragile, il faut choisir des aliments frais et crus ou très brièvement cuits. Elle se trouve facilement en pharmacie, mais il faut prendre garde à ne pas en consommer plus de 1 g/jour, car en excès elle peut être métabolisée (ii) en oxalate (iii) de calcium et éliminée dans les urines où elle est le composant majeur des calculs rénaux.

Propriétés

Chimiquement, il s'agit de l'acide ascorbique (a).

(a) acide L-(+)-ascorbique(b) acide déshydroascorbique

Nomenclature IUPAC :
(5R)-5-((11S)-1,2-dihydroxyethyl))-3,4-
dihydroxy-5-hydrofuran-one
 

 

Ses propriétés viennent de sa capacité à s'oxyder en acide déshydroascorbique (b). C'est donc un antioxydant, qui élimine les dérivés réactifs de l'oxygène (ou radicaux libres). On dit qu'il protège les cellules contre le stress oxydatif, qui est une oxydation des constituants de notre organisme due à un excès de ces radicaux libres (iv) qui sont très instables et oxydent d'autres molécules, ce qui leur confère un important effet cytotoxique (v).

Il n'y a pas de véritable forme de stockage de la vitamine C, et lorsque l'apport cesse les réserves chutent de moitié en 10 à 20 jours.

Le nom ascorbique vient du préfixe a, privatif, et de scorbut. Le scorbut est devenu une maladie rare, mais était très fréquent dès la Renaissance et jusqu'au XIXe siècle chez les marins au long cours. Il s'agit d'une carence en vitamine C, qui provoque un déchaussement des dents, un pourrissement des gencives, des hémorragies et pour finir la mort. Les marins n'avaient pas toujours le loisir de faire escale pour s'approvisionner en fruits et légumes frais. On peut encore l'observer aux USA chez les adolescents suivant un régime alimentaire aberrant (beignets et café noir, sandwich au beurre de cacahuète !).

Rôles physiologiques

On la pare de toutes les vertus : combat la fatigue, le vieillissement de la peau, améliore le tonus, aide à combattre les infections... Sans qu'elle soit la molécule magique que pensent certains, elle possède bien ces propriétés, ce qui sera expliqué plus loin. En 1970, le prix Nobel de chimie Linus Pauling écrivit un article "Vitamin C and the Common Cold" (vi) où il prescrivait de combattre un rhume débutant par la prise de 1 g par jour de vitamine C, ce qui a plutôt fait consensus. Utilisée pendant de courtes périodes à cette dose, elle ne semble pas toxique, puisqu'il a vécu jusqu'à 93 ans !

Elle catalyse l'hydroxylation des acides aminés proline (c) et lysine (d), constituants du collagène, qui entre dans la composition de la peau, de l’os, des dents, du cartilage (on comprend les symptômes du scorbut).

(c) proline(d) lysine

 

La carnitine (e), obtenue à partir de ces mêmes acides aminés, est importante dans la synthèse des acides gras et aussi dans la maintenance de la masse osseuse ; elle joue aussi un rôle dans l'athérosclérose et le risque cardiovasculaire. La vitamine C est essentielle à la synthèse de la carnitine.

(e) carnitine

 

Enfin ses propriétés anti-oxydantes lui confèrent de multiples rôles (synthèse d'hormones, fonctionnement des enzymes, du système immunitaire, absorption du fer par l'intestin).

Plus généralement, les carences en vitamine C, même plus discrètes que dans le scorbut, se manifestent par de l’asthénie, de l’amaigrissement, des céphalées, des douleurs osseuses, une moindre résistance aux infections et des troubles hémorragiques. Le traitement curatif et prophylactique des carences, d’origine alimentaire ou provoquées par des conditions particulières, constitue une indication indiscutable de la vitamine C. Elle est aussi préconisée comme stimulant des défenses de l’organisme au cours des infections virales comme la grippe et le coryza. Il est donc essentiel d'en consommer journellement (fruits et légumes frais).

Nicole Moreau et l’équipe question du mois

 

(i) La vitamine C est découverte en 1928 par Albert von Szent Györgyi, un scientifique hongrois (prix Nobel de médecine en 1937)
(ii) Le métabolisme est l'ensemble des réactions chimiques qui se déroulent à l'intérieur des cellules d'un être vivant, soit pour lui permettre de synthétiser les molécules qui lui sont essentielles pour se maintenir en vie et se reproduire (anabolisme), soit pour dégrader des molécules en excès voire toxiques (catabolisme).
(iii) Acide oxalique C2H2O4    oxalate de calcium Ca2+, OOC-COO ou Ca(COO)2
(iv) Un radical libre est une espèce chimique qui possède un électron non apparié et est très réactif.
(v) Cytotoxique: du grec cyto, cellule et toxique. Il s’agit d’un effet toxique pour les cellules d'un organisme
(vi) « La vitamine C et le rhume »
 

 

Pour aller plus loin

Chimie et alimentation : produits de synthèse / produits naturels, Pierre Feillet, in La chimie et l'alimentation (EDP Sciences, 2010) p. 17

Le vieillissement cutané : prévention et réparation, Philippe Piccerelle, Colloque Chimie, dermo-cosmétique et beauté (2016), Le rôle des vitamines dans le vieillissement cutané §4.4. p 102-103

La découverte des vitamines, Louis Irissou, Revue d'Histoire de la Pharmacie (1953) n° 137

François Martin apothicaire et explorateur, Louis Irissou, Revue d'Histoire de la Pharmacie (1946) n° 116, sur le premier apothicaire français s’étant rendu à Sumatra et qui a fait paraitre en 1604 un « Traité du scorbut » à la suite de son voyage où il recommande comme traitement l'emploi du jus de citron.

 

Crédit illustration : balt/Pixabay

- Question du mois
mediachimie

Pourquoi se faire vacciner contre la grippe et la COVID ?

En raison de la probabilité de circulation concomitante cet hiver des virus grippaux et de la Covid-19, la Haute Autorité de Santé (HAS) recommande de coupler les campagnes de vaccination contre la grippe et la Covid-19 à
...

En raison de la probabilité de circulation concomitante cet hiver des virus grippaux et de la Covid-19, la Haute Autorité de Santé (HAS) recommande de coupler les campagnes de vaccination contre la grippe et la Covid-19 à partir du 18 octobre 2022.

Plusieurs ressources ont fait le point sur les vaccins en général et sur le coronavirus (1). Le lecteur pourra s'y reporter. Rappelons que les vaccins dont nous allons parler ici sont des vaccins prophylactiques (2), et non thérapeutiques (3).

1. Le vaccin antigrippal

La grippe est une maladie respiratoire et aiguë qui est de retour chaque automne et ne disparaît qu’au printemps. Appartenant à la famille Influenza, les virus à l’origine de cette maladie sont de type A, B ou C.

Le vaccin contre la grippe est fabriqué à partir de virus inactivés et fragmentés. Il ne contient pas de virus vivant, et ne présente aucun risque de transmettre la grippe. L’organisme, au contact de ces fractions rendues inoffensives, va développer des anticorps, défenses immunitaires spécifiques qui le protégeront face au virus environ 15 jours après la vaccination.

Quelle est la composition du vaccin 2022-2023 ?

Les virus grippaux étant très changeants, il faut adapter chaque année le vaccin aux virus susceptibles de circuler (4) et revacciner chaque année. Le vaccin antigrippal pour l'hiver 2022-2023 cible les virus appartenant aux quatre différentes souches suivantes : un virus de type A/Victoria/2570/2019 (H1N1) ; un virus de type A/Darwin/9/2021 (H3N2) ; un virus de type B/Austria/1359417/2021 ; un virus de type B/Phuket/3073/2013.

On connaît déjà bien les virus H1N1 et H3N2, responsables essentiels de la grippe de 2018 caractérisée par 8 semaines d’épidémie en France et à l’origine de 1,8 million de consultations, de 65 600 passages aux urgences, de 11 000 hospitalisations et de 8100 décès (5).

Comment fabrique-t-on le vaccin contre la grippe ?

Les vaccins vivants atténués sont utilisés depuis 1921 comme le célèbre BCG (6) contre la tuberculose. Depuis une cinquantaine d'années, on fabrique les vaccins à l'aide d'œufs fertilisés. On injecte le virus par un petit trou à l'intérieur de ces œufs qui sont incubés 3 jours à 35°C. Le virus se multipliera à l'intérieur des cellules qui composent l'embryon de poulet. Une nuit à 5°C fait mourir les embryons, puis on récupère et purifie le blanc d'œuf. On tue alors le virus - et les bactéries éventuellement présentes - à l'aide d'un produit chimique (7), puis on purifie ces virus inactivés qui sont ensuite fragmentés (8), ce qui augmente la réponse immunitaire et diminue encore les risques. Le vaccin est alors prêt.

2. Le vaccin contre la COVID-19

Cette année en France, la Haute Autorité de Santé a recommandé des vaccins bivalents (9) qui protègent contre la souche initiale SARS-CoV-2 et son variant Omicron. Ce sont des vaccins à ARNm (10) dirigés contre les protéines de pointe (11) des virus. Les vaccins précédents restent efficaces contre les formes graves, les hospitalisations et les décès, mais les vaccins bivalents sont mieux adaptés aux virus qui circulent actuellement et peuvent éviter l'infection.

Le vaccin à ARNm est-il sans danger ?

La figure 1 montre comment la cellule eucaryote (12) va fabriquer les protéines : une cellule se compose d'un cytoplasme (13) à l'intérieur duquel est le noyau, séparé par une membrane difficile à franchir. À l'intérieur du noyau, l'ADN porteur de l'information génétique va être copié, c'est la réplication ; cet ADN va être reproduit sous forme d'ARN c'est la transcription ; cet ARN va perdre des fragments non utiles, c'est l'épissage qui conduit à l'ARN messager. Ce dernier traverse la membrane pour passer dans le cytoplasme, où il est traduit en protéines.

 

Figure 1.

Pour préparer le vaccin, comme l'ARNm est détruit dès qu'il pénètre dans l'organisme, on enveloppe l'ARNm fabriqué par synthèse (14) et codant pour les fragments de protéine de pointe dans une membrane artificielle (15) qui mime la membrane externe de la cellule. Lors de la vaccination, ce vecteur va pénétrer dans le cytoplasme où il introduit l'ARNm, mais il ne peut pas pénétrer dans le noyau. Il n'y a donc a priori pas de risque de modification du génome.

Mais ce premier vaccin à ARNm, préparé si vite, est-il vraiment sûr ? Il y a plusieurs arguments qui montrent que sa préparation n'a pas été « bâclée » :

  • i) Depuis 1990, une chercheuse hongroise, Katalin Karikó, a proposé d'utiliser l'ARNm dans des buts thérapeutiques (16)
  • ii) Ce nouveau type de vaccin a bénéficié des études de 2003 lors de l'épidémie de SARS CoV-1
  • iii) La synthèse du fragment d'ARN codant pour un fragment de la protéine de pointe a été très rapide, ce qui a accéléré les choses par rapport aux vaccins classiques
  • iv) La circulation très rapide du virus a permis d'obtenir des résultats plus rapidement.


3. Co-vaccination grippe Covid : est-ce sans danger ?

Selon une étude de Santé publique France (17), 25 % des personnes à risque comptent faire les deux vaccins en même temps. Dans un communiqué, l'Assurance maladie rassure : « la co-vaccination est sans danger : les données disponibles indiquent que la co-administration est généralement bien tolérée ». D'ailleurs, lors de la campagne de vaccination contre la grippe 2021-2022 qui était couplée avec celle contre la Covid-19, « aucun signal particulier n’a été identifié ». En cas d'impossibilité ou de refus de recevoir les deux vaccins en même temps, aucun délai n'est à respecter entre deux vaccinations.

Une question assez curieuse se pose : « pourquoi les gens ont-ils plus peur des vaccins que des médicaments ? " Il semblerait que ce soit d'abord la peur de la seringue ! Et le vaccin est une invention récente, du XIXe siècle, alors que l'homme se soigne avec des emplâtres, des tisanes depuis plus de mille ans. Enfin, de tout temps les hommes ont été plus préoccupés par la guérison des maladies que par leur prévention.

Nicole Jeanne Moreau et l’équipe Question du mois


 

(1) Zoom sur les vaccins (02/10/2020) ; Ensemble de ressources et de liens relatifs au coronavirus SARS-CoV-2 et à la pandémie de COVID-19 (mediachimie.org)
(2) Pour prévenir ou atténuer les effets d'une éventuelle infection par un agent pathogène naturel.
(3) Pour soigner ou aider le patient à lutter contre une maladie déjà survenue, par exemple un cancer.
(4) C’est l’Organisation mondiale de la santé (OMS) qui est chargée, en amont, de leur surveillance.
(5) Selon Santé publique France
(6) Bacille de Calmette et Guérin
(7) Formaldéhyde et/ou détergent
(8) Les vaccins à virions fragmentés contiennent des virus inactivés, qui ont été fragmentés au moyen d’un détergent, d’un solvant ou de ces deux substances. Réf: https://www.canada.ca/fr/sante-publique/services/rapports-publications/releve-maladies-transmissibles-canada-rmtc/numero-mensuel/2018-44/numero-6-7-juin-2018/article-2-resume-vaccin-sous-unitaire-vaccin-antigrippal-virion-fragmente.html
(9) Moderna ou Pfizer-BioNTech
(10) ARN messager
(11) Spicule ou spike
(12) Du grec eu, bien et caryos, noyau. Ce sont les cellules de tout être vivant autre que les bactéries.
(13) Du grec cyto, cellule et plasma, forme
(14) Ils sont synthétisés in vitro à l’aide d’une matrice d’ADN et d’une enzyme, l’ARN polymérase. L’ARN est ensuite purifié sur des colonnes de chromatographie, qui profitent des propriétés chimiques (pH ou affinité) pour séparer les composants de la solution et isoler le produit d’intérêt.
(15) Formée de lipides, de phospholipides et de cholestérol
Exemple de l’excipient du vaccin Pfizer :


 source  : wikipedia, domaine public, Lien

(16) Elle rejoint en 2013 BioNTech, un des deux laboratoires, avec Moderna, à l'origine du vaccin.
(17) https://www.has-sante.fr/jcms/p_3288855/fr/covid-19-et-grippe-la-has-precise-les-conditions-d-une-co-administration-des-vaccins

 

 

Crédits. Illustration : MasterTux/Pixabay ; Figure 1 : © N.J. Moreau

- Question du mois
mediachimie

Noël : la magie des bougies. Comment les bougies nous éclairent-elles ?

Le principe de la bougie, vieux comme le monde, consiste en un corps gras (combustible) et une mèche inflammable. Lorsqu’on enflamme la mèche, la chaleur dégagée fait fondre le corps gras. Ce liquide cireux va alors
...

Le principe de la bougie, vieux comme le monde, consiste en un corps gras (combustible) et une mèche inflammable.

Lorsqu’on enflamme la mèche, la chaleur dégagée fait fondre le corps gras. Ce liquide cireux va alors grimper le long de la mèche par un phénomène appelé capillarité et se vaporiser sous l’action de la chaleur. Les gaz formés brûlent au contact du dioxygène de l’air : c’est la flamme de la bougie.

Cette combustion consomme la cire et le dioxygène et elle dégage de la chaleur. Elle va donc permettre la fonte de la cire restante et fournir en continu l’apport en combustible dans la mèche, ce qui entretient le processus, bien que la mèche se consume peu à peu.

En l’absence d’air (donc de dioxygène) - ou de mèche - la bougie s’éteint.

Les composants des bougies

Historiquement, la mèche était un jonc, il était trempé dans de la graisse fondue animale, suif de bœuf ou de mouton, graisse de cochon… ou cire d’abeille (beaucoup plus coûteuse et essentiellement réservée aux usages religieux) qu'on laissait ensuite durcir.

L’identification au début du XIXe siècle de la stéarine (i) extraite de graisse animale ou végétale et dont l’acide stéarique est issu puis, à la fin de ce siècle de la paraffine solide, issue du pétrole, a permis la production industrielle des bougies, formées avec des mèches en coton ou en chanvre tressé entourées d’une cire pouvant être moulée et solide à température ordinaire. Lors de leur fabrication, les bougies peuvent être colorées, si l’on introduit des pigments, ou parfumées par exemple par des huiles essentielles.

Les températures de fusion varient selon les produits utilisés. La température de fusion de la paraffine se situe entre 52 et 56°C, celle de l’acide stéarique est de 69-70°C et celle de la cire d’abeille se situe entre 62 et 65°C.

De nos jours, les bougies commercialisées sont essentiellement fabriquées à partir de paraffine.

Les constituants chimiques

Les graisses végétales ou animales sont composées de triesters du glycérol et d’acides à très longue chaine carbonée appelés acides gras (ii). Ainsi, la stéarine est le triglycéride de formule C57H110O6) (iii) dont on tire l’acide stéarique de formule CH3-[CH2]16-COOH. C’est l’acide stéarique qui a permis la production à grande échelle de bougies tout au cours du XIXe siècle (iv).

La paraffine est un mélange obtenu en raffinerie à partir de résidus solides du pétrole. Elle est constituée d’alcanes, molécules d’hydrocarbures saturés, de formule brute CnH2n+2, où la valeur de n se situe entre 18 et 32.

La paraffine qui est utilisée dans la production industrielle de bougies est en général complétée par l’apport d’un mélange appelé « acide stéarique technique » composé d’acides palmitique(v)et stéarique, et improprement appelé « stéarine »(vi). Ce mélange permet de rendre la cire plus opaque, plus dure ou encore d’augmenter la durée de combustion de la bougie.

La cire d’abeille est un mélange naturel complexe dont les constituants chimiques ne sont pas tous identifiés. Elle est composée d'environ 15% d'hydrocarbures linéaires à longues chaînes, 71% d'esters (dont 44% de monoesters d'acide gras et d'alcool gras, 12% d'hydroxyesters, 14% de di et triesters et 1% d'esters de stérols), 3% d'acides libres (vii) et 1% d'alcools libres, auxquels s’ajoutent des composés variables selon l’origine de la ruche.

La combustion de la bougie

La combustion complète des substances constituant une bougie conduit à la formation de CO2 et H2O. Mais si elle est incomplète, par manque d’oxygène elle produit aussi du monoxyde de carbone CO et des dépôts de carbone (suie).

De plus, une fois chauffés, la paraffine et les éventuels adjuvants parfumés ou colorés libèrent un peu de substances (acétone, benzène, toluène) toxiques et agressives pour les poumons. La combustion d’une bougie parfumée donne aussi naissance à des particules ultrafines associées à des HAP, hydrocarbures aromatiques polycycliques que l’on retrouve lors d’une combustion incomplète, et dont la toxicité est connue.

S’il y a de la fumée ou de la suie visibles, c’est que la bougie contient des substances polluantes.

La cire d’abeille ne dégage pas de fumée en brûlant ce qui donne des bougies moins polluantes.

Il est donc conseillé d’utiliser les bougies dans un milieu suffisamment aéré pour profiter de la magie qu’elles offrent.

Andrée Harari, Françoise Brénon et l’équipe question du mois

 

 

(i) La stéarine a été découverte par Michel Eugène Chevreul au XIXe siècle lors de ses travaux sur les corps gras entre 1813 et 1823. Voir son traité Recherches chimiques sur les corps gras d’origine animale (sur le site Gallica -BNF)

(ii) Un acide gras est un acide carboxylique dont la chaine carbonée présente de 4 à 36 atomes de carbone.

(iii) La stéarine est le triester formé à partir du glycérol (ou propan-1,2,3-triol) HOH2C–CHOH–CH2OH et de l’acide stéarique CH3-[CH2]16-COOH. Sa formule développée est :

Image illustrative de l’article Tristéarine
Domaine public, Lien

(iv) M. E. Chevreul et J. L. Gay-Lussac avaient entrevu l’innovation issue de leurs travaux d’isolement des acides gras, en particulier de l’acide stéarique, et avaient pris un brevet pour la réalisation de la bougie stéarique au cours des années 1830. Source « Des produits chimiques très recherchés: les acides gras pour la fabrication des bougies. La naissance de la lipochimie industrielle au cours du XIXe siècle », Gérard Emptoz, Culture technique, n° 23 (1991), pp. 33-45.

(v) L’acide palmitique a pour formule CH3(CH2)14COOH

(vi) Voir la définition du dictionnaire Larousse

(vii) Sources "Manuel des corps gras", Technique et Documentation, Lavoisier, Paris, 1992, pages 297 et 306 et Cires et cirages E. Gomez § 2.2.2.
Pratiquement un quart de la cire d'abeille est du palmitate de myricyle C15H31-COO-C30H61 et on trouve également une quantité de l'ordre de 12% de cérotate de myricyle C25H51-COO-C30H61.

 

Pour en savoir plus

[1] Histoire d’une chandelle, de M. Faraday : pages 29 et suivantes (J. Hetzel (Paris) Ed.) (sur le site Gallica - BNF)
[2] Pour les différents parties éclairantes de la flamme, l’article : The candle, the light bulb and the radio, de R. de Hilster, CNPS Proceedings 2017, p. 13

 

Crédits illustration : DR. A. Harari pour Mediachimie

- Question du mois
mediachimie

Pourquoi réduire la consommation de sel dans l'alimentation ?

C’est un problème de santé publique et aussi de chimie analytique !  Nous avons besoin de sel (chlorure de sodium de formule NaCl) pour maintenir constant notre équilibre électrolytique : c’est-à-dire les rapports entre
...

C’est un problème de santé publique et aussi de chimie analytique ! 

Nous avons besoin de sel (chlorure de sodium de formule NaCl) pour maintenir constant notre équilibre électrolytique : c’est-à-dire les rapports entre les concentrations des différents ions (sodium, potassium, chlorure, calcium, magnésium, phosphate) et l’eau contenus dans notre organisme. Or on perd du sel dans l’urine et la sueur et c’est pourquoi nous devons consommer du sel. Si le sel est vital pour notre organisme un excédent de sel entraine une augmentation de la pression artérielle conduisant à des maladies cardiovasculaires et des AVC. Il est à signaler que l’organisme a besoin d’un minimum de sel pour bien fonctionner car si nous n’en absorbions pas du tout les effets de toxicité seraient les mêmes que ceux décrits lors d’une trop grande consommation. L’OMS recommande de diminuer la consommation de sel depuis une dizaine d’années pour atteindre un objectif de 30% de baisse en 2025.

Pour réduire la consommation en sel, il faut : i) diminuer la dose journalière qui est située actuellement entre 6,5 et 12,5 g de sel/jour, ii) réduire le taux de sel dans les aliments consommés, iii) réduire l’usage du sel de table, en ne dépassant pas le taux de 1,5 % en masse d’aliment, iv) abaisser l’optimum de préférence au goût en utilisant par exemple des arômes de cacahuète ou des ajouts d’herbes aromatiques (persil, basilic, origan… qui renforcent la perception du sel. Des tests sont actuellement en cours sur l’utilisation des différentes variétés de sel (sel fin, fleur de sel, sel micronisé) [1].

La saveur salée fait partie des cinq saveurs fondamentales dont l’amer, l’acide, le salé, le sucré et l’unami (qui vient du japonais : goût protéine des viandes). Leur carte de répartition n’est pas localisée dans des zones précises de la langue contrairement à une idée répandue jusque dans les années 70 [2]. La saveur salée est perçue par toutes les papilles de la langue par un mécanisme transmembranaire qui déclenche un influx nerveux transmis au cerveau nous permettant d’apprécier cette saveur. Les seuils de détection varient avec l’âge de 0,3 g/L pour les juniors à 0,8 g/L pour les seniors, sans différence observable entre les hommes et les femmes. Mais il n’y a pas que le cation sodium du chlorure de sodium qui est responsable de la saveur salée : l’ion potassium, le lithium (non consommable) et l’ion ammonium participent aussi à cette saveur. Le chlorure d’ammonium est utilisé dans les pays du Nord où les rennes sont domestiqués de cette manière car ils en raffolent !

Disposer de mesures précises de la teneur en sel de nos aliments est donc nécessaire.

Des observations qualitatives de fluorescence ont montré que le sel pénètre peu dans la viande grillée de bœuf mais assez profondément dans la chair du poulet cuit [1] .

Des mesures IRM (imagerie par résonance magnétique) issues de la résonance magnétique nucléaire (RMN) du sodium (23Na), nécessitant d’utiliser des champs magnétiques forts de l’ordre de 4,7 teslas (environ cent mille fois le champ magnétique terrestre !) permettent de doser avec une grande précision la teneur en sodium des aliments [1]. Par exemple on a pu mesurer exactement la quantité de sel dans des jambons après un séchage de plus de six mois (8 g de sel pour 55 g d’eau !) Mais cette méthode permet aussi d’obtenir une cartographie de la répartition du sel à l’intérieur des aliments (sans la destruction de cet aliment). Des carottes cuites dans des solutions classiques de cuisine ont été analysées et la concentration du sel au bord des carottes est égale à 7,2 g/L tandis qu’à l’intérieur de la carotte elle est deux fois plus faible ! Une étude plus fine des formes des spectres montre l’existence d’ions sodium libres mais aussi d’ions sodium liés aux molécules voisines contenues dans l’aliment, ce qui donne des informations sur la relation entre la saveur salée plus ou moins longue en bouche et la nature des aliments !

À noter que l’emploi du glutamate de sodium comme alternative au chlorure de sodium fait encore l’objet actuellement de travaux de recherche car il est responsable des saveurs : salée mais aussi unami !

Jean-Pierre Foulon et l'équipe Question du mois

 


Note : L’IRM du sodium est aussi utilisée avec succès pour doser les ions sodium dans le cerveau humain (travaux de recherche réalisés à l’hôpital de Marseille en 2022 !) permettant des diagnostics médicaux très précieux.

Pour en savoir plus :
[1] Comment réduire le sel dans notre alimentation ?  série de cinq conférences vidéos par H. This, C. Hugol-Gential, J.M. Bonny, T. Thomas-Danguin, J.P. Poulain, en libre accès sur le site de l’Académie de l’agriculture, séance 19/10/2022
[2] Le goût : de la molécule à la saveur, Loïc Briand, in La chimie et les sens (EDP Sciences, 2018) pp. 189-209 ; vidéo et chapitre du Colloque La chimie et les sens (22 février 2017).

 

Crédits : image d'illustration, licence CC0, PxHere

- Question du mois
mediachimie

Pourquoi utiliser de l’ammoniac ou de l’ammoniaque dans des applications domestiques ?

La molécule de formule NH3 appelée ammoniac(i) est un gaz, très soluble dans l’eau. On donne aussi le nom d’« ammoniaque » ou « solutions ammoniacales » à ses solutions aqueuses. La forme gazeuse est présente à l’état
...

La molécule de formule NH3 appelée ammoniac(i) est un gaz, très soluble dans l’eau. On donne aussi le nom d’« ammoniaque » ou « solutions ammoniacales » à ses solutions aqueuses.

La forme gazeuse est présente à l’état naturel lors de la décomposition de substances protéiques. 80% de sa production industrielle par le procédé Haber-Bosch(ii) sert à la synthèse des engrais.

Pour ce qui est des applications domestiques, on trouve la solution aqueuse en magasin de bricolage, dans les rayons de produits ménagers ou sur Internet, avec les informations d’utilisations suivantes « nettoyant, décapant », « dégraisse, détache les tissus, ravive les couleurs », « nettoyer les tapis et moquettes, nettoyer les surfaces vitrées… ». Il existe aussi des mélanges prêts à l’emploi.

En ce qui concerne le nettoyage de l’argenterie, l’utilisation des solutions d’ammoniac est discutable(iii).

La solution d’ammoniac est également une des composantes utilisée pour réaliser des « frisures permanentes » sur cheveux(iv), ou dans des colorations capillaires.

Les noms rencontrés sur les étiquettes du commerce

Ammoniaque alcali 22° baumé ; ammoniaque 13° ; ammoniac 13% ; ammoniaque alcali 13 % ; alcali 13% ; ammoniaque (ou ammoniac) alcali 22° hydroxyde d’ammonium ref alcali en solution à 20% (en poids d’ammoniaque dans l’eau).

Ces noms recouvrent-ils la même chose et quelles sont les significations de toutes ces informations ?

Que se passe-t-il lors de la dissolution de l’ammoniac gazeux dans l’eau ?

Lors de la dissolution du gaz ammoniac dans l’eau il s’établit un équilibre dont l’équation bilan (A) est la suivante :

(A) NH3 (aq) + H2O (l) = NH4+(aq) + OH-(aq)

Mais cet équilibre ne produit qu’une très faible quantité d’ions ammonium NH4+. Ainsi la solution contient très majoritairement des molécules d’ammoniac hydratées. Par exemple, pour 17 g de gaz ammoniac NH3 dissout dans 1 L d’eau cela conduit à l’équilibre à avoir 99,6 % sous forme NH3,aq(v). Il se forme seulement 0,4 % sous forme NH4+ et simultanément la même faible quantité d’ions hydroxyde OH-.


Ainsi écrire que l’ammoniaque (correspondant à l’ammoniac en solution) aurait pour formule chimique NH4OH est donc inexact et source d’erreur(vi). Cette formulation date du XIXe siècle(vii).

La solution aqueuse d’ammoniac est aussi une solution basique en raison de la présence des ions OH-(viii).

Le mot « alcali » a pris plusieurs définitions au cours des siècles. En tant qu’adjectif il signifie que le produit est une base forte et donc que sa solution a concrètement un pH allant de 10 à 14 selon sa concentration(ix), ce qui est le cas de la solution d’ammoniac. En tant que nom, « l’alcali » ou « alcali volatil » est synonyme de solution d’ammoniac. Ce terme est toutefois désuet.

Pourquoi l’ammoniac peut-elle retirer des taches de couleurs ?

L’ammoniac NH3 peut donner des complexes en s’associant aux molécules responsables de la tache et ainsi « l’encapsuler » ou faire passer sous forme ionique un colorant qui sera alors soluble dans l’eau. Son caractère basique participe aussi au processus de dégraissage.

Ces propriétés étaient utilisées dès l’Antiquité ! À Pompéi et dans la Rome antique il existait des ateliers de foulonnerie où l’on nettoyait les vêtements des dignitaires. Le linge était foulé avec les pieds par des esclaves dans des bacs contenant des argiles et de l’urine humaine récoltée dans la ville. En effet l’urine contient de l’urée qui se transforme en ammoniac grâce à une enzyme uréase (naturellement présente dans l’urine) selon :

(NH2)2CO (urée) + H2O → CO2 + 2 NH3


Précautions à prendre dans un usage domestique(x)

En raison de son caractère basique, il est conseillé d’utiliser des gants lors de la manipulation d’une solution aqueuse d’ammoniac et d’éviter le contact avec les yeux et les muqueuses.

L’odeur caractéristique de l’ammoniac ne vous échappera pas ! Au moment de manipuler ce produit il est vivement conseillé d’ouvrir les fenêtres pour aérer la pièce et d’éviter de respirer les vapeurs.

Ne pas stocker ni manipuler le produit près d’une source de chaleur, car NH3 dissous peut facilement redonner de l’ammoniac gazeux s’échappant du flacon.

Ne pas stocker la bouteille d’ammoniac à proximité d’une bouteille d’acide chlorhydrique (éventuellement possédée comme détartrant). En effet les vapeurs de NH3 comme celles de chlorure d’hydrogène (HCl) pouvant s’échapper des flacons donneront des cristaux blancs de chlorure d’ammonium(xi), qui se déposeront sur les bouchons. On peut observer que les grandes surfaces ne respectent pas toujours ces règles de stockage !

Dans diverses circonstances vous pouvez identifier la présence d’ammoniac. Par exemple :

  • L’ammoniac apparait dans des processus de fermentation réalisés dans l’industrie agroalimentaire. Ainsi les caves d’affinage du Comté se distinguent par une forte odeur due à des vapeurs d’ammoniac(xii).
  • Le Hákarl, plat traditionnel de l'Islande obtenu par fermentation de chairs de certains requins, a une odeur très forte due à la transformation in fine de l’urée en ammoniac, comme vu pour les urines grâce à l’action de l’uréase. La chair du poisson passe alors d’un pH 6 à un pH 9.
  • L’émanation de l’ammoniac gazeux a lieu également si on laisse vieillir trop longtemps certains fromages ou certains poissons et est associée de façon générale aux processus de putréfaction.

Pour en savoir plus sur la concentration des solutions vendues

Pour les étiquettes indiquant un pourcentage, il s’agit du pourcentage massique(xiii) correspondant au rapport entre la masse de la quantité d’ammoniac introduite(xiv) dans l’eau sur la masse totale de la solution obtenue. Donc l’information « solution à 13% » signifie que 100 g de solution contient 13 g de NH3.

Qu’est-ce que le degré Baumé ?

Il est étonnant de trouver encore une information en degré Baumé, unité exclue des unités légales françaises depuis 1961. À 20 °C, la correspondance entre la densité et les degrés Baumé (noté B) pour les liquides moins denses que l'eau (densité < 1) est : d = 140 / (B + 130). Cela donne pour la solution d’ammoniac à 22° d = 140/(22+130) = 0.921 et donc une masse volumique(xv) de 0,921 kg/L.

Les étiquettes au laboratoire de chimie

Dans les laboratoires de chimie l’étiquette indique un pourcentage massique, P, une masse volumique ρ en g par litre (g.L-1) et une masse molaire M en g par mole (g.mol-1). Ces 3 données permettent de déterminer la concentration molaire en ammoniac, [NH3,aq], exprimée en mol par litre (mol.L-1) ; la relation à utiliser est C = P* ρ /M où bien sûr la masse molaire de l’ammoniac est M = 17 g.mol-1 et non 35 g.mol-1, comme on le trouve de façon erronée sur certains flacons, sur des sites Internet grand public et même sur la fiche officielle associée à son numéro CAS(xvi) ! Cette masse molaire erronée provient de l’hypothèse fausse que l’ammoniaque aurait pour formule NH4OH(xvii).

Conclusion

Si l’ammoniac est connu depuis l’Antiquité par ses usages qui perdurent et satisfont les consommateurs, son identification ne date que de la fin du XVIIIe siècle et est due à Claude Louis Berthollet(xviii).

Et qu’en est-il des dénominations ammoniac ou ammoniaque et des formules chimiques NH3 ou NH4OH associées ? Cette chronique illustre que la chimie est une science étudiant des phénomènes complexes à modéliser dont l’interprétation ne fait pas nécessairement l’unanimité et évolue en fonction des connaissances.

Lydie Amann et Françoise Brénon et l’équipe question du mois

 

 

(i) du grec Ammoniakon, « de Ammôn », nom grec d'Amon, dieu égyptien, car on extrayait près du temple d’Ammon en Lybie un minerai nommé salmiac, qui libérait ce gaz. Le salmiac contient du chlorure d’ammonium NH4Cl.

(ii) Consulter Comment fabriquer des engrais avec de l'air ? La synthèse de l'ammoniac

(iii) Pour l’argenterie, le noircissement de l’argent étant lié à la formation de sulfure d’argent très stable, l’ammoniac ne suffit pas à le détruire par complexation. Pour en savoir plus :  Nettoyer l’argenterie par « une recette de grand-mère » : comment ça marche ?

(iv) Pour en savoir plus Pourquoi ça frise ou ça défrise ?

(v) Ce calcul résulte de la valeur de la constante d’équilibre


 

On notera que 17 g de NH3 correspond à 1 mol d’ammoniac soit environ la dissolution de 25 L de gaz à température ambiante.

(vi) Voir la bonne définition du Larousse https://www.larousse.fr/dictionnaires/francais/ammoniaque/2936

(vii) On lira avec intérêt cet article du Chemical Education Why We Are all Using a Nonexistent Substance: NH4OH

(viii) L’acidité et la basicité d’une solution aqueuse sont mesurées sur une même échelle par le pH, grandeur reliée à la concentration en ions H+aq par pH = - log[H+aq].

Les concentrations en H+aq et OH-aq étant toujours liées par la relation [H+aq] * [OH-aq] = Cte. On considère qu’une solution est basique si son pH est supérieur à 7 et acide si pH <7.

(ix) En prenant le même exemple que précédemment (cf. note v), le pH de cette solution vaut 11,6.

(x) On peut consulter la fiche de toxicologie de l’ammoniac sur le site de l’INRS ici.

(xi) La réaction mise en jeu est : HCl (gaz) + NH3 (gaz) → NH4Cl (s). À ce sujet consulter l’anecdote historique La chimie contre les mauvaises odeurs.

(xii) La teneur en ammoniac dans l’air y est de l’ordre de 23 ppm (partie par million en volume dans l’air (mL/m3) d’après le CIGC - Comité Interprofessionnel de Gestion du Comté).

(xiii) Pourcentage massique :

(xiv) Compte tenu de l’équilibre (A) très peu déplacé, la masse d’ammoniac introduite est quasiment égale à la masse de NH3(aq) à l’équilibre.

(xv) La masse volumique se calcule par la relation ρ = d*ρ(eau) sachant que ρ(eau) = 1 kg/L

(xvi) Le numéro CAS de la solution aqueuse est : 1336-21-6 et celui du gaz est 7664-41-7.
Il s’agit de son numéro d'enregistrement unique auprès de la banque de données de Chemical Abstracts Service.

(xvii) Exemple : Le chimiste dans son laboratoire prend une bouteille et étudie l’étiquette pour en connaitre les caractéristiques. Il lit par exemple : P = 28%  ρ = 0,90 kg/L  et M = 35,05 g/mol. Une autre bouteille donne les mêmes informations sauf au niveau de la masse molaire M = 17 g/mol.
Or, l’expression de la concentration molaire exprimée en mol /L a pour expression : C = P* ρ /M .
Ainsi, l’application numérique pour la bouteille 1 donne donc C voisine de 7,2 mol. L-1 et pour la bouteille 2 de 15 mol. L-1, le facteur 2 provenant du facteur 2 entre les 2 masses molaires. Pourtant les dosages acido-basiques de ces 2 solutions montrent que chacune des 2 bouteilles a une concentration en ammoniac NH3 voisine de 15 mol/L. L’erreur provient du fait que l’ammoniaque est assimilée à l’hydroxyde d’ammonium NH4OH en solution (d’où M = 14 + 16 + 5 = 35 g.mol-1) ce qui est erroné comme l’a montré l’étude de l’équilibre de dissolution dans lequel l’ammoniac reste essentiellement sous la forme NH3(aq).

(xviii) voir Berthollet et la découverte de la composition de l’ammoniac

 

Crédits illustration : DR. F. Brénon pour Mediachimie

- Question du mois
mediachimie

Pourquoi ne pas mélanger de l’eau de Javel et du détartrant ?

Peut-être avez-vous été tenté, en vous croyant plus efficace, de mettre simultanément de l’eau de Javel et du détartrant dans la cuvette des WC afin de la désinfecter et de la rendre plus blanche. Surtout ne faites pas
...

Peut-être avez-vous été tenté, en vous croyant plus efficace, de mettre simultanément de l’eau de Javel et du détartrant dans la cuvette des WC afin de la désinfecter et de la rendre plus blanche.

Surtout ne faites pas cela ! Pour en être convaincu, découvrez la composition de ces produits et leurs rôles respectifs.

Le tartre ou calcaire

Ces deux termes sont synonymes. De formule chimique CaCO3, il s’agit du carbonate de calcium.

Le calcaire qui se dépose provient des eaux dites dures (car riches en ions calcium et magnésium mais aussi en ions bicarbonate (i)). En effet les eaux de pluie qui s’infiltrent, s’enrichissent en ions présents dans les couches géologiques traversées. Ainsi les régions calcaires vont conduire à des eaux dures dans les nappes phréatiques (ii).
La réaction de déposition du calcaire sur les canalisations et dans la cuvette des WC est la suivante :

Ca2+ + 2 HCO3-CaCO3 (solide) + CO2 (gaz) + H2O

Le détartrant

Comme son nom l’indique il a pour rôle de retirer le tartre.

Or l’ion carbonate présent dans le calcaire est une base (composé capable de capter des ions H+ (iii) ) et le détartrant est un acide (composé capable de libérer des ions H+). Ils peuvent donc réagir l’un sur l’autre selon

CaCO3 + 2 H+aq → Ca2+ + CO2 (g) + H2O

Les bulles que vous observez sont donc des bulles de dioxyde de carbone et le dépôt de calcaire est éliminé. Le dégazage du dioxyde de carbone rend la réaction totale (iv).

L’acide présent dans un détartrant de WC varie selon les marques (v). On rencontre essentiellement des mélanges sous forme de gels ou poudres contenant de l’acide chlorhydrique, de formule HCl ou de l’acide phosphorique H3PO4 ou de l’acide sulfurique H2SO4. Sur une échelle de pH allant de 0 à 14 dans l’eau, la solution acide d’un détartrant pour WC a un pH proche de 1 ou 2 selon les produits. Le vinaigre ne convient pas (vi).

L’eau de javel

L’eau de Javel est une solution basique contenant aussi des ions hypochlorite ClO- et des ions chlorure Cl-.

La solution basique est due à de la soude ou hydroxyde de sodium NaOH dissoute dans l’eau. Ainsi l’eau de Javel a un pH voisin de 12 ou 13 selon sa concentration.

Quand vous utilisez l’eau de Javel vous recherchez à utiliser les propriétés des ions hypochlorite. En effet leur propriété essentielle est d’être un oxydant puissant ce qui a pour effet de détruire pratiquement tous les composés comme les virus, les bactéries et autres microorganismes ainsi que les produits issus de la décomposition de la matière organique. Les colorants et les odeurs disparaissent aussi.

Que se passe-t-il donc lors d’un mélange de détartrant et d’eau de Javel ?

L’acide du détartrant va consommer les ions hydroxyde de la soude présente dans l’eau de Javel selon la réaction, H+aq + OH- → H2O. Donc le pH va diminuer. Si on se retrouve en excès de détartrant le milieu devient acide et les ions hypochlorite deviennent alors instables en présence des ions chlorures.

Il se forme un dégagement de dichlore, gaz très dangereux pour la santé selon

ClO- + Cl- + 2 H+ → Cl2(g) + H2O

Alors n’hésitez pas à avertir vos connaissances et les enfants qu’il ne faut pas réaliser un tel mélange.

N’oubliez jamais de lire la notice des produits ménagers que vous utilisez. Dans le cas du détartrant il expressément écrit : « ATTENTION : Ne pas mélanger avec du chlore ou de la Javel ». Dans le cas de l’eau de Javel, l’information est la suivante : « Attention ! Ne pas utiliser en combinaison avec d'autres produits. Peut libérer des gaz dangereux (chlore) ».

La bonne marche à suivre

Dans un premier temps éliminer le calcaire en laissant agir le détartrant. Une fois le calcaire éliminé, rincer abondamment la cuvette en tirant successivement 2 à 3 chasses d’eau.

Puis ajouter de l’eau de Javel et laisser agir. Enfin, rincer abondamment.

Dans la mesure du possible aérez la pièce.

Et prenez toujours des précautions quand vous manipulez de l’eau de Javel : portez des lunettes et des gants de ménage.

Françoise Brénon et l’équipe question du mois
 

 

(i) Le bicarbonate a pour autre nom hydrogénocarbonate et pour formule chimique HCO3-. L’eau naturelle ayant un pH voisin de 6 à 7 les ions carbonate passent sous la forme hydrogénocarbonate, en raison de la stabilité de ces espèces en fonction du pH.

  

(ii) Les régions de France où l’eau est dure sont celles où les terres sont calcaires (Ile-de-France, Champagne crayeuse, Nord, Alpes…). Les régions où l’eau est douce c’est-à-dire qu’elles contiennent peu d’ions calcium et magnésium sont les régions de la Bretagne et du Massif Central…).

(iii) L’ion H+ est aussi appelé ion hydrogène. On le note pour simplifier H+aq, notation que l’on lit « ion hydrogène aqueux ».

(iv) Vous avez déjà rencontré cette réaction dans la question du mois : Pourquoi le champagne, le vin ou du Coca-Cola® peuvent-ils abimer le marbre ?

(v) Pour en savoir plus on peut consulter les fiches techniques des produits commerciaux en cherchant "fiche technique" + nom du produit sur un moteur de recherche.

(vi) Le vinaigre blanc contient de l’acide acétique (avec un pH voisin de 3,5) ce qui n’est pas assez efficace pour détartrer les WC. On l’utilise plutôt par exemple pour détartrer les cafetières. La composition des détartrants commerciaux tout prêts pour cafetières sont plutôt les acides citrique, lactique, sulfamique… (gamme de pH 2 à 4).

 

Crédits illustration : DR. Mediachimie

- Question du mois
mediachimie

Pourquoi mettre une peinture antirouille sur les grilles de jardin ?

Le printemps est propice au bricolage et à l’embellissement des habitations. Portails, grilles de jardin, balustrades, garde-corps et autres objets en fer ou acier n’y échappent pas ! Votre pièce métallique extérieure
...

Le printemps est propice au bricolage et à l’embellissement des habitations. Portails, grilles de jardin, balustrades, garde-corps et autres objets en fer ou acier n’y échappent pas !

Votre pièce métallique extérieure s’est dégradée. Il faut avant tout traitement de prévention et de décoration éliminer la dernière couche de peinture souvent écaillée et cloquée et ôter la rouille par grattage et ponçage, éliminer toute trace de résidus puis dégraisser la surface avec un solvant organique (par exemple le white spirit(i) ou l’acétone(ii)) afin d’avoir un support net et sec.

Remettre alors une simple couche de peinture ne suffit pas si l’on veut augmenter la durée de vie du support.

Qu’est-ce que la rouille ?

Le fer est un métal qui se corrode en présence de l’oxygène de l’air et de l’humidité. La rouille qui se forme a une composition qui évolue au cours du temps et du taux d’humidité. Pour simplifier, on peut dire qu’elle est au final essentiellement formée de composés du fer à son degré oxydation III, FeO(OH) et Fe2O3 hydraté.

Cette couche d’oxydes en raison de sa structure à l’échelle microscopique n’adhère pas à la surface du fer, est perméable à l’air et l’humidité et forme des boursoufflures ; ainsi le métal peut continuer à s’oxyder.

Il est donc nécessaire de protéger le fer ou l’acier. Plusieurs étapes peuvent être nécessaires, successives ou simultanées.

Le décapage chimique = éliminer la rouille

La rouille peut être attaquée par les acides (entités libérant des ions H+)(iii). On ne peut pas utiliser n’importe quel acide à l’échelle du grand public. En effet par exemple il ne faut pas utiliser d’acide chlorhydrique ni sulfurique qui s’ils détruisent bien la couche de rouille attaquent aussi le fer en profondeur en dégageant du dihydrogène. En cas d’usage il est indispensable de se protéger les yeux par des lunettes de laboratoire et les mains avec des gants adaptés et d’effectuer un rinçage.

L’acide oxalique de formule HOOC-COOH est un décapant un peu plus facile à manipuler.

À l’issue d’une telle étape la surface du métal est mise à nu et il ne reste pas trace du produit décapant.

Produit chimique antirouille à la fois curatif et préventif

L’acide phosphorique H3PO4 en est le modèle type. Il peut être directement étalé au pinceau ou à la brosse sur la pièce à traiter. Si celle-ci est petite elle peut être totalement immergée dans cet acide.

Il y a à la fois destruction de la rouille et modification de l’acier à sa surface. En effet, une fois la rouille attaquée par l’acidité de l’acide phosphorique les ions Fe2+ et Fe3+, apparus à la surface de l’acier, se combinent aux ions phosphate pour former des phosphates de fer solides(iv) qui, de par leurs structures, adhèrent à la surface du fer, protégeant ainsi la surface sous-jacente d’une attaque ultérieure par l’oxygène et l’eau et contribuent de fait à diminuer la vitesse de corrosion. On parle de passivation du fer ou d’inhibition à la corrosion ou encore de couche anticorrosion.

Les acides carboxyliques, de formule générique RCOOH, avec un groupe R à longue chaine carbonée (8 à 10 atomes de C par exemple) peuvent jouer le même rôle. On parle d’acide gras. L’ion carboxylate formé RCOO- se combine aussi aux ions Fe3+ pour créer une fine couche protectrice de passivation(v).

Couche d’apprêt

L’apprêt est une couche de peinture primaire destinée à améliorer l'adhérence, l'efficacité de la protection anticorrosion ou à limiter les irrégularités de surface. Une fois étalé, cet apprêt reste sur la pièce traitée. C’est par exemple le cas du produit Rustol ©(vi) « vernis solvanté qui forme un film protecteur » isolant le métal du milieu extérieur.

Les peintures contiennent les pigments(viii) pour répondre à la couleur demandée incorporé à un mélange, à base de résines polymères qui formeront un film après étalement et séchage du solvant. En plus du côté esthétique, ce film joue un rôle d’étanchéité.

Le résines polymères pour peintures métalliques sont à base de composés glycérophtaliques aussi appelés alkydes ou de polyuréthannes(ix). Il existe aussi des résines dites « alkyd-uréthanes »(x). Ces peintures se trouvent soit en phase solvant organique (white spirit) soit aussi depuis les années 2000 pour certaines sous forme d’émulsion en phase aqueuse.

La peinture antirouille « tout-en-un »

Pour simplifier le travail du bricoleur et des professionnels et éviter de déposer d’une part une ou deux couches d’antirouille suivies de la peinture de finition, certaines peintures actuelles pour le fer contiennent à la fois les pigments et les composants antirouille, le tout incorporé au mélange de résines polymères décrites ci-dessus.

Les produits antirouille passivant intégrés au sein de ces peintures, sont pour la plupart à base de dérivés de l’acide phosphorique comme les phosphates de zinc ou d’ammonium(xi). On peut aussi trouver des carboxylates de sodium.

Des progrès considérables dans ces formulations de peinture permettent d’avoir une efficacité de plusieurs années.

Toutefois il faut éviter de rayer ou d’écailler la surface ou de poser longtemps un autre objet métallique comme des supports de jardinière métallique(xii) pour balustrade de balcon. Les déjections d’oiseaux sont aussi une cause de dégradation des peintures.

Si vous achetez une grille de jardin galvanisée, c’est-à-dire que l’objet en fer a été intégralement recouvert d’une fine couche de zinc en usine, sa durée de vie est beaucoup plus grande. Il s’agit là d’un autre mode de protection du fer(xiii). Dans ce cas le métal au contact avec l’extérieur n’est plus du fer mais du zinc. Pour le peindre il faut préalablement étaler ou pulvériser une couche primaire pour acier galvanisé à base de résine époxy pour faciliter l’accrochage de la peinture de finition.

Allez, bon courage et maintenant à vos pinceaux et rouleaux !

Françoise Brénon et l’équipe question du mois

Ballustrade avec rouille. Photo : F. Brénon

 


(i) Le white spirit est un mélange d’hydrocarbures contenant 8 à 12 atomes de carbone et sans benzène. À l’échelle industrielle le dégraissage des métaux se fait de plus en plus à la vapeur d’eau sèche pour limiter le rejet de vapeurs organiques issues des solvants (COV).

(ii) L’acétone a pour formule H3CCOCH3

(iii) selon par exemple : Fe2O3 + 6H+ = 2 Fe3+ + 3 H2O

(iv) Le phosphate formé en surface avec les ions ferriques est par exemple FePO4, selon la réaction Fe2O3 + 2 H3PO4 → 2 FePO4 + 3 H2O et avec les ions ferreux Fe3(PO4)2, 8 H2O source Techniques de l’Ingénieur § 1.2.2.3. « Traitements de surface des métaux avant peinture. Procédés » Théophile Guéguen (1992)

(v) Selon les conclusions de la thèse (page 167) de Stéphanie Hollner, sur le « Développement de nouveaux traitements de protection à base d’acide carboxylique pour la conservation d’objets en fer du patrimoine culturel » il est établi que « dans le cas des solutions à base d’acide décanoïque ou de décanoate de sodium, le carboxylate de fer formé est constitué par des agrégats de type Fe3O dans l’entité chimique [Fe3O(CnH2n+1COO)6 (H2O)3]+, NO3- , xH2O avec n = 10 »

(vi) La fiche technique du Rustol© est ici  (site du fabricant https://www.owatrol.com)

(vii) Pour en savoir plus consultez le Zoom sur les pigments de J.-P. Foulon, Mediachimie.org

(viii) Le film thermodurcissable tridimensionnel résulte de la réaction de polymérisation entre du glycérol et de l’anhydride phtalique .

(ix) Les polyuréthannes découlent d’une réaction entre un diol (HO-R-OH) et un diisocyanate (OCN-R'-NCO) pour conduire à un polymère de motif répétitif → -(OCONH- R'-NHCOO-R)- . Les chaînes R et R’ peuvent être insaturées permettant une réticulation conduisant à un composé également tridimensionnel. Ces peintures sont parfois vendues sous forme de 2 composants à mélanger avant usage.

(x) Il s'agit d'alkydes modifiés dans lesquels une partie de l'anhydride phtalique est remplacée par un isocyanate tel que le diisocyanate de toluène (TDI). Ils sèchent généralement plus rapidement et présentent une résistance à l'abrasion et une résistance à l'hydrolyse améliorées, mais sont plus chers.

(xi) Phosphate de zinc de formule Zn3(PO4)2 et phosphate d’ammonium de formule (NH4)3PO4. Avec le phosphate de zinc, Il peut se former à la surface du fer des phosphates mixtes de zinc et de fer II passivants.

(xii) Dans ce cas on observe des créations de micro-piles, le fer étant attaqué en certains endroits et parfaitement sain en d’autres.

(xiii) Pour en savoir plus, vous pouvez consulter la partie B de la ressource Corrosion des métaux et protection,  David Soissons, Dossier pédagogique Nathan / Mediachimie.org