Page précédente
Mots-clés : couleur, pigments, verres, céramiques, glaçures, nanoprécipités

Les couleurs sont une manifestation des interactions rayonnements-matières, lumière / pigments par exemple. L’auteur cite en illustration les peintures pariétales découvertes dans les grottes d’Ardèche peintes grâce à deux pigments : noir pour le charbon et ocre pour les oxydes de fer. D’autres couleurs furent obtenues plus tard : bleu, vert, en jouant sur les états d’oxydation du fer (+3 ou +2) ou en utilisant des minéraux comme la pierre lapis-lazuli. L’alliance des pigments minéraux et de l’art du feu conduit aux verres colorés, les nanoparticules d’or aux curieuses couleurs changeantes de la coupe de Lycurgue. L’émaillage des céramiques, la recristallisation partielle des verres permettent de découvrir les phénomènes de réflexion et de diffusion de la lumière.

Comment jouer avec le feu et la lumière pour colorer les verres et les céramiques (lien externe)

Auteur(s) : Jacques Livage
Source : L'Actualité chimique n° 396 (mai 2015) pp. 25-28
Page précédente
Mots-clés : couleur, vision, pigments, luminescence, fluorescence, longueur d’onde

L’auteur nous entraîne vers des horizons qui nous font découvrir comment naissent les couleurs. Elles n’existent que dans notre cerveau. Il faut cependant de la lumière car ce sont les photons réfléchis qui frappent notre rétine et déclenchent des réactions biochimiques qui transmettent des signaux à notre cerveau, informations différentes suivant la fréquence de l’onde. À une longueur d’onde correspond une couleur.

Sont traitées la trilogie des couleurs, la couleur liée à la nature chimique des molécules, la couleur « physique » due à un phénomène de l’optique physique et enfin les verres dopés par des nanoparticules de couleurs variables. D’autres classes de lumières colorées sont celles de l’incandescence et celles de la luminescence caractérisées l’une par la température d’émission, et l’autre par la hauteur de l’état excité. Des références nombreuses complètent cet article très compréhensible.

La genèse des couleurs, un dialogue entre lumière et matière (lien externe)

Auteur(s) : Bernard Valeur
Source : L'Actualité chimique n° 396 (mai 2015) pp. 29-33
Page précédente
Mots-clés : cholestérol, cholestérine, calculs biliaires, M. E. Chevreul, stérols, graisses, lipides, structures chimiques

Après le rappel de l’intérêt des chimistes et médecins sur les calculs biliaires au XVIIIe siècle, on décrit le travail de M. E. Chevreul sur les acides gras d’origine animale. C’est Chevreul qui obtient par recristallisation la « cholestérine » qui est encore conservée au Muséum d’histoire naturelle. Il en donne la composition en 1813.

Dans la majeure partie du XIXe siècle de nombreux chimistes s’efforcent de donner la formule brute exacte et la formule développée de ce que l’on appelle à la fin de ce siècle le cholestérol. Il faut attendre le XXe siècle pour que cette molécule tétracyclique trouve sa description spatiale exacte de la structure et que l’on explique sa biosynthèse. Ce qui est remarquable, c’est que les mesures et spectres de RMN de la « cholestérine » isolée par Chevreul en 1814 coïncident très exactement avec ceux du « cholestérol » commercialisés en 2015 !

La saga du cholestérol : de la substance à la structure (lien externe)

Auteur(s) : Bernard Bodo
Source : L'Actualité chimique n° 399 (août-septembre 2015) pp. 52-58
Page précédente
Mots-clés : batteries, stockage de l’électricité, automobile, énergies renouvelables, lithium-ion

Le texte donne un état des lieux très complet sur l’histoire, la production, la commercialisation et les applications des batteries utilisées pour le stockage électrochimique de l’énergie.

Sont passées en revue, les batteries au plomb, les nickel-cadmium (Ni-Cd), les nickel-hydrures métalliques (Ni-MH). Leurs caractéristiques et leurs utilisations sont très bien analysées et illustrées par un large tableau. Les lithium-ion sont traitées à part. La seconde partie de cet article est consacrée à l’évolution des marchés, notamment celui du véhicule électrique et celui des applications stationnaires associées aux énergies renouvelables. Très bien documenté, c’est un texte de vulgarisation qui peut être très apprécié.

Applications présentes et futures des batteries (lien externe)

Auteur(s) : Anne de Guibert
Source : L'Actualité chimique n° 400-401 (octobre-novembre 2015) pp. 70-72

Mediachimie | L’Energy Observer, un formidable laboratoire flottant

Date de publication : Vendredi 20 Octobre 2017
Rubrique(s) : Éditorial

L’Energy Observer, un ancien catamaran de course avec lequel l’australien Peter Blake avait gagné le trophée Jules Verne en 1994, a été transformé en 2016 en un superbe bateau de démonstration des énergies renouvelables, bourré d’innovations en chimie. Long de 30,5 mètres et large de 13 mètres, son capitaine, Victorien Erussard a entamé en août 2017 le tour du monde en 6 ans et 101 escales sans émettre un litre de gaz à effet de serre (1). Autonome en énergie, ce bâtiment accumule toutes les récentes technologies permises par l’innovation en chimie.

Cela commence par les 130 m2 de panneaux solaires (2) spécialement étudiés par le CEA–Leti avec des cellules bifaces à hétérojonction dont le rendement approche de 22% (3). L’ensemble des cellules couvre le pont, elles sont revêtues d’une couche antidérapante et donnent une puissance crête de 21 kW. L’électricité solaire générée est stockée dans des packs de batteries ion-lithium spéciaux, apportant une réserve d’énergie de 106 kWh (4). La propulsion se fait par deux hélices mues par deux moteurs électriques à fort rendement de puissance de 41 kW chacun et tournant à 3000 tours/minute capable de faire avancer ce navire en composite (5) à une vitesse comprise entre 10 et 15 nœuds. L’astuce de ces moteurs c’est qu’ils sont réversibles en hydrogénérateurs et lorsque le bateau court sur son erre, porté par le vent ou un courant, les hélices engendrent un courant et une puissance de 2x2,5 kW qui peut recharger les batteries. Il y a aussi une autre source d’énergie : sur le pont une trappe s’ouvre sur un cerf-volant automatisé qui sous le vent tire le bateau en augmentant sa vitesse et en réduisant les dépenses d’énergie. S’y ajoute une pile à hydrogène, aussi source d’énergie. En effet ce navire labo dispose d’un électrolyseur (6) qui dissocie l’eau en oxygène et hydrogène. Ce dernier est récupéré sous une pression de 30 bars puis compressé à 150 bars et stocké dans 8 réservoirs pour donner une réserve de 62 kg d’H2. On sait que l’hydrogène est un vecteur d’énergie (7) à travers la pile à combustible qui produit de l’électricité à partir de la recombinaison H2 + O = H2O (8). Pour compléter les sources, deux petites éoliennes à axe vertical peuvent fournir un appoint de 2 kW. On comprend dès lors qu’avec toutes ces technologies d’avant-garde ce « Solar Impulse des mers » (9) aura une autonomie énergétique complète. S’y ajoutent un désalinisateur d’eau de mer qui fonctionne en osmose inverse (10) et dans le dôme de navigation une électronique embarquée (11) et un super logiciel informatique connecté, optimisant la navigation, prenant en compte non seulement l’état de la mer et du vent mais aussi la nébulosité et la gestion de l’énergie.

L’Energy Observer fait route vers la Méditerranée et doit être début décembre en escale à Marseille. Les élèves du Lycée Galilée de Gennevilliers suivent attentivement cette odyssée, ils sont en ce moment à la Cité des sciences et de l’industrie pour se relayer devant une maquette et un démonstrateur d’électrolyse produisant de l’hydrogène et ainsi expliquer les technologies du bateau aux plus jeunes. Ils seront également en décembre à l'escale de Marseille.

Bon vent à cette nouvelle « calypso des mers »  ! (12)

Jean-Claude Bernier
Octobre 2017

Quelques ressources pour en savoir plus :

1) Le changement climatique (Chimie et… junior)
2) Les panneaux solaires (vidéo, 2 :34)
3) Un exemple d’énergie renouvelable : panneaux solaires photovoltaïques
4) L’énergie : stockage électrochimique et développement durable
5) Chimie et construction navale
6) Production d’hydrogène par électrolyse de l’eau sur membrane acide
7) L’hydrogène, vecteur de la transition énergétique
8) Fonctionnement de la pile à combustible (vidéo, 1:30)
9) Solar Impulse 2 et la chimie
10) D’eau et de sel (vidéo, 14:00
11) Toujours plus petit ! (Chimie et… junior)
12) Site du projet Energy Observer : http://www.energy-observer.org
 

Le prix Nobel 2017 de chimie

Date de publication : Lundi 09 Octobre 2017
Rubrique(s) : Événements

Cette année, le prix Nobel de chimie a été décerné à trois scientifiques Jacques Dubochet de l’université de Lausanne, Joachim Frank de l’université Columbia à New York et Richard Henderson de Cambridge. Les trois lauréats ont été récompensés pour avoir mis au point la technique de cryo-microscopie électronique capable de déterminer la structure à haute résolution des protéines. La structure et l’image des grosses protéines sont des challenges en sciences du vivant, ne serait-ce que pour trouver les moyens chimiques de les modifier pour altérer et tuer bactéries et virus. Les Rayons X grâce aux faisceaux des synchrotrons et les microscopes électroniques sont les outils de déterminations structurales classiques mais dont l’application aux objets du vivant n’est pas facile.

Les efforts en ce sens ont débuté dans les années 1970 où l’anglais Richard Henderson a cherché à perfectionner les meilleurs microscopes électroniques. En effet, si la microscopie électronique permet d’approcher la dimension des atomes dans les solides, le flux du faisceau d’électrons et le vide poussé dégradent et assèchent très vite les tissus biologiques. Les premiers perfectionnements ont consisté d’abord à obtenir des images sous vide partiel mais elles restaient imprécises. À partir des années 1980, Jacques Dubochet et son équipe eurent l’idée de « vitrifier » très rapidement les échantillons à la température de l’azote liquide (- 190°C), les images « figées » se sont alors améliorées. En 1991, l’américain Joachim Frank, grâce à un outil informatique de sa conception par analyse d’images, réussit à augmenter drastiquement la résolution de celles-ci. C’est ainsi qu’avec la méthode de « congélation » plus l’analyse informatique il obtint l’image tridimensionnelle du ribosome, une énorme molécule qui synthétise les protéines du vivant. Richard Henderson pour sa part avec ces méthodes fut le premier à présenter la structure atomique d’une grosse protéine commune à plusieurs bactéries.

Aujourd’hui la méthode de cryo-microscopie électronique a permis d’identifier la structure de nombreux virus. Elle est devenue indispensable pour trouver des cibles sur des protéines et molécules des bactéries et virus.

  The resolution progression of cryo-EM. © Martin Högbom, Stockholm University

  The resolution progression of cryo-EM. © Martin Högbom, Stockholm University

Mediachimie | Alerte aux nano !

Date de publication : Vendredi 06 Octobre 2017
Rubrique(s) : Éditorial

Depuis près de vingt ans le « nanomonde » s’est développé. Rappelons d’abord qu’un nanomètre (nm) est mille fois plus petit que le micromètre et qu’une particule de 10 nm est 50 000 fois plus petit que l’épaisseur d’un de vos cheveux. Si les microprocesseurs de nos smartphones sont de plus en plus puissants, c’est que par lithographie on grave les transistors à moins de 20 nm (1). De même les microcapteurs de CO ont des composants à dimensions nanométriques (2), la télévision HD utilise aussi des « quantum dots » nanométriques (3) et même en thérapie les nanomédicaments sont un espoir pour les traitements du cancer (4).

Cet été la presse s’est fait l’écho d’une enquête très médiatisée sur la présence de nanoparticules de TiO2 dans de nombreux aliments, plats cuisinés, pâtisseries, bonbons… Une publication de l’université de Séoul en mai attire aussi l’attention sur des poudres de carbone émises par les imprimantes 3D (5). Ces annonces peuvent semer le trouble dans l’agroalimentaire, chez les consommateurs et aussi chez les usagers d’imprimantes 3D. Pour ces dernières, qui se multiplient dans le grand public, la fabrication additive se fait le plus souvent par fusion de fils de thermoplastiques (PLA - acide polylactique, ABS - acrylonitrile butadiène styrène) à des températures de 150°C à 200°C qui peuvent permettre l’émission de vapeurs mais probablement pas de nanoparticules de carbone, d’autant que maintenant la plupart des imprimantes sont capotées. Plus sérieux est le cas des imprimantes 3D industrielles qui se multiplient chez les fabricants de pièces complexes à partir de poudres métalliques déposées en couches successives fondues par laser. La sécurité des opérateurs est assurée par des installations qui satisfont aux normes relatives aux locaux à pollution spécifique où les concentrations moyennes en poussière totale et alvéolaire de l’atmosphère ne doit pas dépasser 10 et 5 mg/m3 d’air. Les rangées d’imprimantes bien fermées sont disposées dans des locaux ventilées avec leurs propres alimentations de poudres, étanches, limitant les manipulations individuelles et obéissant aux normes (6).

À cet égard, il faut rappeler qu’il y a un domaine où les normes n’ont aucun pouvoir, il s’agit des nano-objets relevant de la pollution ambiante : nanoparticules de TiO2 des peintures, des cosmétiques, des nanosilices, des particules de CeO2 issues de pots catalytiques, etc…, tous objets non manufacturés de l’ordre de 20 000 à 30 000 nano-objets par mm3 (7). Cette situation relativise l’annonce médiatique des nanoparticules de TiO2 de l’additif alimentaire E 171. Car de plus, au-delà du « scoop », il faut rappeler que les autorités européennes par l’EFSA ont largement étudié la toxicité de cet additif depuis plusieurs années. Il comporte entre 0 et 39% de particules inférieures à 100nm et d’après cette agence, « les expositions à l’E171 ne sont pas de nature à entrainer un risque sanitaire ». Mais en France, avec le principe de précaution, l’ANSES a été alerté par divers ministères, suite à une publication (Bettini et al., dans Scientic Reports) sur d’éventuelles lésions du colon chez des rats soumis à un régime riche en nanoparticules de TiO2. L’expertise collective diligentée aussitôt a rendu ses avis en avril, après analyse des protocoles d’essais et audition des auteurs. La conclusion du panel d’experts ne remet pas en cause l’avis initial européen de l’EFSA, elle constate aussi que les réactions inflammatoires intestinaux ne sont que difficilement étayées et que les résultats ne permettent pas de conclure à une génotoxicité. L’ANSES rappelle par ailleurs que cela fait plus de dix ans que l’agence travaille sur les effets biologiques des nano-objets et qu’elle souhaite que des protocoles d’essais rigoureux et normés soient mis en place en ce domaine (8).

Jean-Claude Bernier
Ocotbre 2017

Quelques ressources pour en savoir plus :

1) Chimie et nanolithographie (vidéo, 8:20)
2) Micro-capteurs à semi-conducteurs pour la détection de CO (conférence)
3) La chimie s’invite dans la guerre des télés
4) Les nanomédicaments : une approche intelligente pour le traitement des maladies sévères
5) La 3D, troisième révolution industrielle ?
6) Production et utilisation des nano-objets : évaluation et gestion des risques
7) Les nano-objets : un avenir prometteur sous contrôle (chimie et… junior)
(8) Le défi posé aux chimistes pour la protection de la santé et de l’environnement. Le point de vue de l’ANSES
 

Mediachimie | Quiz Fête de la science 2017

Date de publication : Vendredi 06 Octobre 2017
Rubrique(s) : Événements

Dans le cadre de la Fête de la science, l’équipe de Mediachimie.org vous propose de rentrer dans le monde souvent surprenant et parfois magique de la chimie et de ses applications, au travers d’un quiz ludique et instructif.

C’est l’occasion de découvrir que la chimie est partout, qu’elle est présente en permanence dans notre quotidien et dans tout ce qui nous entoure. Source d'innovations et de progrès, elle accompagne les autres sciences et les autres technologies, dans tous les laboratoires de recherche, dans tous les domaines d'activités.

Avec ce quiz, testez vos connaissances et découvrez des innovations ou des applications inattendues, fruits de l'observation et de l'imagination des chercheurs, parfois aidés par ce que la Nature a su inventer avant nous.

À vos claviers !

Lien vers le quiz

Lien vers le règlement
 

Mediachimie | Quelle chimie permet aux allumettes de s’enflammer ?

Date de publication : Jeudi 21 Septembre 2017
Rubrique(s) : Question du mois

Les allumettes que nous utilisons tant en cette saison de barbecue sont bien pratiques et faciles à utiliser. Pourtant elles sont le fruit d’une longue histoire. Elles résultent de nombreuses recherches et industrialisations suivies d’améliorations pour les rendre sûres et non toxiques. Elles nécessitent une friction pour s’enflammer et pour que ce soit d’un usage utile il faut que cette flamme dure suffisamment longtemps. Mais quels sont donc les ingrédients mis en jeu pour que cela fonctionne ?

Les composés présents sur la surface à gratter

Le grattoir est constitué de poudre de verre et de phosphore rouge.
Le phosphore rouge est la variété allotropique (1) stable du phosphore, non inflammable et non toxique.

Les composés présents sur la tête de l’allumette

La petite tige de bois de peuplier est imprégnée de phosphate d’ammonium et son extrémité est recouverte de paraffine. Sur cette extrémité est déposée une pâte constituée à environ 50 % de chlorate de potassium (KClO3) (2), de trisulfure de diantimoine (Sb2S3) et de phosphate d’ammonium (NH4)3PO4, le tout lié par une colle. Le colorant présent est ajouté pour la rendre jolie !

Cette tête est appelée le « bouton » dans le processus de fabrication.

Que se passe-t-il lors du grattage, et après ?

La poudre de verre permet la friction provoquant un échauffement. Cette augmentation locale de température provoque la transformation du phosphore rouge en phosphore blanc (3). Celui-ci, très volatil et inflammable, s’enflamme immédiatement en présence du dioxygène de l’air. Cette étape sert à amorcer la flamme.

Celle-ci se communique alors à la tête de l’allumette.

Le chlorate, oxydant, se décompose sous l’effet de la chaleur de la flamme en chlorure et libère de l’oxygène selon KClO3 → KCl + 3/2 O2 (gaz)

Le trisulfure de diantimoine est un réducteur et sert de combustible, permettant ainsi à la flamme de se maintenir.

Il se forme simultanément du trioxyde de diantimoine et du dioxyde de soufre, responsable de l’odeur que l’on perçoit.

Les réactions mises en jeu sont :
Sb2S3 + 9/2 O2 → Sb2O3 + 3 SO2

ou globalement Sb2S3 + 3 KClO3 → Sb2O3 + 3 SO2 + 3 KCl

Et ce bel enchaînement de réactions ne dure que quelques dixièmes de secondes !

La cire de paraffine, qui est aussi un bon combustible, va permettre à la flamme de se propager le long de la tige de bois.

Quant au phosphate d’ammonium dont le bois est imprégné, il joue le rôle de retardateur de combustion afin que l’allumette ne brûle pas trop vite, et limite la formation des fumées lorsque l’allumette s’éteint.

La fabrication des allumettes en France a pendant plus d’un siècle été un monopole d’état (représenté par la SEITA). La dernière usine de Saintines dans l'Oise a fermé en 1993, elle fabriquait environ 15 milliards d'allumettes sur les 22 milliards consommées en France et consommait alors 8400 m3 de bois de peuplier. Depuis la consommation chute de 2 à 4% par an, concurrencée par les allume-gaz et les briquets.

Pour voir en images et au ralenti le processus d’inflammation d’une allumette tout en identifiant les réactions qui se passent, regardez la vidéo « How Do Matches Work ? » sur la chaine Youtube de l’American Chemical Society.

Françoise Brénon

 

 

(1) Une variété allotropique correspond à une forme cristalline ou moléculaire. Le phosphore rouge a un enchainement structural semblable à un polymère :


source http://www.compoundchem.com/2014/11/20/matches/

(2) On utilise du chlorate de potassium qui est non hygroscopique (absorbe peu ou pas l’humidité de l’air) contrairement au chlorate de sodium.

(3) Le phosphore blanc est une autre variété allotropique du phosphore . Sa structure découle d’une « dépolymérisation « du phosphore rouge et est :

Structure et apparence du phosphore blanc.source : https://fr.wikipedia.org/wiki/Phosphore_blanc 


Il est très inflammable. On pourra lire à son sujet la ressource « Le phosphore et l’invention des allumettes ».

Page précédente
Mots-clés : biomasse, bioéthanol, chimie organique, biotechnologie

La chimie organique s’attache à se libérer des ressources carbonées fossiles en se fournissant de matières premières végétales, huiles, amidon, sucres, biomasse ligno-cellulosique, tout en essayant de ne pas concurrencer les cultures vivrières. Les voies biochimiques ont fait des progrès notamment par sélection d’enzymes par biotechnologie qui permettent de transformer la cellulose et la lignine. Les usines et pilotes se multiplient produisant le bioéthanol de seconde génération. Les projets de recherche aboutissent maintenant à des procédés industriels, mais le gros problème reste les coûts de production qui restent encore trop élevés que par les voies classiques partant du pétrole ou du gaz industriel.

Accédez au texte original (lien externe)

Auteur(s) : Jean-Claude Bernier
Source : L’Actualité chimique n° 404 (février 2016) p. 5
Précédent • … 111112113114115116117 • … Suivant