- Question du mois
mediachimie

Pourquoi le champagne, le vin ou du Coca-Cola® peuvent-ils abimer le marbre ?

Les fêtes arrivent et vous allez peut-être nonchalamment poser votre verre de vin, de champagne ou de Coca-Cola® sur le plateau de marbre qui recouvre un ancien meuble chez vos parents ou grands-parents. Aïe aïe aïe ! Un
...

Les fêtes arrivent et vous allez peut-être nonchalamment poser votre verre de vin, de champagne ou de Coca-Cola® sur le plateau de marbre qui recouvre un ancien meuble chez vos parents ou grands-parents.

Aïe aïe aïe ! Un anneau rugueux et parfois blanchâtre risque d’apparaitre quand vous allez retirer votre verre si quelques gouttes du précieux liquide ont coulé le long du verre jusqu’à son pied. Mais que s’est-il passé ?

Des boissons légèrement acides

Les vins qu’ils soient blancs ou rouges sont légèrement acides. En effet ils contiennent entre autres les acides tartrique, malique, citrique, lactique et succinique. Les trois premiers proviennent du moût et les deux derniers des fermentations. Le pH est la grandeur qui mesure cette acidité (i). En moyenne il vaut environ 3,3 pour un vin blanc, 3,5 pour un rouge, 3,4 pour un rosé et 3,0 pour un champagne. Quant au Coca-Cola® qui contient de l’acide phosphorique, son pH est voisin de 2,5 pour le classique (ii). De même les jus de fruits comme les jus d’orange ou de citron sont acides. Les boissons gazeuses contiennent de plus une forte concentration en dioxyde de carbone CO2.

Et le marbre, de quoi est-il fait ?

Nous parlons ici du vrai marbre. Le calcaire ou carbonate de calcium (CaCO3) est le principal constituant des marbres. S’ils sont colorés, veinés, ou polychromes comme peut être celui du plateau de votre meuble c’est grâce à la présence d’autres éléments chimiques (iii). Selon les carrières d’où provient le marbre ces éléments sont caractéristiques et font sa renommée, comme le marbre blanc veiné de gris de Carrare ou le rose des carrières de Caunes-Minervois que l’on peut admirer au Grand Trianon dans le parc du château de Versailles…

Quelles réactions avec le marbre ? Il faut distinguer les boissons tranquilles des boissons gazeuses.

Pour les vins et jus de fruits non gazeux

Le calcaire est une base et si un acide l’attaque, il se passe une réaction qui s’accompagne d’un dégagement de dioxyde de carbone. Cela dégrade le calcaire en surface. Appelons RCOOH tout acide présent et la réaction s’écrit :

2 RCOOH + CaCO3 → 2 RCOO- + Ca2+ + CO2 (gaz°) + H2O

Quand vous retirez votre verre, un petit rond creux apparait et la surface du marbre y est devenue un peu rugueuse. La dégradation locale est irréversible. Pour redonner un bel aspect il faudrait repolir le marbre.

Pour le champagne et les boissons au cola, c’est plus compliqué !

Ces deux boissons présentent de plus du dioxyde de carbone dissous. Pour le champagne il s’est formé in situ lors de la fermentation alcoolique en milieu clos (iv). Pour le cola il est ajouté sous pression. À la réaction acido-basique précédente se superposent d’une part une attaque par l’acide phosphorique dans le cas du cola et pour les deux une suite de réactions liées à la forte présence de CO2 dissous.

CaCO3 (contenu dans le marbre) + CO2 (dans la boisson) + H2O → 2 HCO3- + Ca2+

Des ions bicarbonate (HCO3-) (v) et des ions calcium (Ca2+) sont dissous dans l’eau de la boisson et présents à la surface du marbre. Si on laisse s’évaporer l’eau il se forme un dépôt complémentaire. Du carbonate de calcium blanc se reforme avec dégagement de CO2 selon :

2 HCO3- + Ca2+ → CaCO3(s) (dépôt à la surface du marbre) + CO2 + H2O

Mais les conditions de cristallisation de ce carbonate ne sont plus les mêmes que celles géologiques qui ont conduit aux cristaux de calcite du marbre. La trace blanche qui apparait est ainsi du calcaire pulvérulent déposé sur le marbre !

C’est pourquoi il est déconseillé de réaliser un plan de travail en vrai marbre dans une cuisine car le risque de déposer un liquide (vinaigre, vin…) ou un aliment acide (citron, agrume…) est très important. Les plans de travail d’aspect pierre et résistants sont plutôt en granit ou en matériaux de synthèse capable de parfaitement imiter le marbre ! Il existe aussi des « plans de travail mélaminés » : sur le support en bois aggloméré on encolle une feuille décorative imitant le marbre blanc veiné ou de carrare et enduite d'une couche de résine mélamine (vi) polymère thermodurcissable très résistant.

Toutefois des plans de travail en marbre pour cuisine ou coin repas existent et sont traités en surface par imprégnation afin de boucher les pores et laisser en surface une couche hydrophobe à base de silicones. Il est nécessaire de les entretenir, les nourrir et les protéger par des produits adaptés (cire translucide…).

Certains lavabos ou vasques de salle de bain sont en vrai marbre. Le risque est plus faible d’y renverser un liquide acide, mais pensez-y !

Françoise Brénon et l’équipe Question du mois

 

(i) Le pH dans l’eau varie de 0 à 14. Le milieu est neutre quand le pH vaut 7. Il est acide si pH < 7 et basique si pH > 7.

  

(ii) À combien s'élève le pH du Coca‑Cola et qu'est-ce que cela veut dire? sur le site Coca-Cola Suisse

(iii) Le calcaire y est présent sous forme de cristaux de calcite, CaCO3, pouvant présenter des structures différentes avec des traces d’autres ions minéraux (manganèse Mn, fer Fe, zinc Zn…).

(iv) Ce sont presque 5 litres de CO2 qui sont piégés dans une bouteille standard créant une pression d’environ 5 à 6 bar. Attention donc de ne pas prendre le bouchon dans les yeux quand il saute ! Pour en savoir plus : Pourquoi y-a-t-il des bulles dans mon champagne ?

(v) L’ion HCO3- a pour nom hydrogénocarbonate mais il est plus connu dans le grand public sous le nom de bicarbonate.

(vi) Le monomère mélamine a pour formule C3H6N6

 

Pour en savoir plus
Carbonate de calcium / calcite/ calcaire, Produit du jour de la SCF
Zoom sur la vinification, Mediachimie.org
Mesurer le pH d’une solution : des acides, du raisin au vin, dossier Nathan Mediachimie, Mediachimie.org

 

Crédits illlustration : Tache sur marbre. Source : Françoise Brénon

- Éditorial
mediachimie

Que faire des pales d’éoliennes ?

Alors que la stratégie gouvernementale de la transition énergétique se base en partie sur l’énergie éolienne, nombre d’experts pointent la difficulté d’atteindre les objectifs fixés pour 2028. En effet il existe en France
...

Alors que la stratégie gouvernementale de la transition énergétique se base en partie sur l’énergie éolienne, nombre d’experts pointent la difficulté d’atteindre les objectifs fixés pour 2028. En effet il existe en France en 2021 8000 éoliennes sur 1400 parcs, qui ont fourni 8% de la production électrique en 2020 pour une puissance installée de 18 GW (1). Les objectifs de la feuille de route sont d’arriver à 34 GW pour l’éolien terrestre soit donc de doubler le nombre d’éoliennes, et de 5 GW pour l’offshore. Les puissances individuelles de chaque éolienne sont passées en plus de 20 ans de 1,5 MW à 5 MW voire 7 MW pour l’éolien en mer. Comme la puissance est proportionnelle à la surface du cercle décrit par les pales, celles-ci sont passées de 20 m à près de 160 m de longueur grâce au progrès de la chimie des matériaux composites (2).

Une note du ministère de la Transition écologique rappelle que pour atteindre les objectifs il sera nécessaire de s’assurer de la rentabilité des installations, de leur maintenance, de leur intégration paysagiste et enfin de leur recyclage. Au moment où de plus en plus de Français s’inquiètent ou s’opposent à de nouveaux champs terrestres d’éoliennes et les pêcheurs aux implantations en mer, il importe de se pencher sur le démontage et recyclage des installations (3).

La durée de vie d’une éolienne est de 20 à 30 ans et c’est depuis les années 80 à 90 que l’implantation des parcs s’est faite en Europe. Après plus de 20 ans de bons et loyaux services les machines peuvent être démantelées ou remplacées par d’autres plus modernes. On estime en France à 1500 le nombre d’installations à démonter d’ici 2025 et la PPE (Programmation Pluriannuelle de l’Énergie) précise que le recyclage des principaux composants sera obligatoire dès 2023. En fait près de 75 à 80% de la masse de l’installation peut être recyclée, le béton du socle et l’acier des mâts, la cellule et même le cuivre et les terres rares du rotor sont valorisables. Sur le site lui-même, les excavations des fondations, la remise en état du terrain sont prévues dans la convention privée.

Mais que faire des pales ?

Les premières générations d’éoliennes arrivent en fin de vie et le président de WindEurope estime que d’ici 2023 14000 pales d’éoliennes seront mises hors service et leur recyclage devient une priorité absolue. Ce n’est pas facile car elles sont constituées de matériaux composites comportant des fibres de verre ou plus récemment de fibres de carbone assemblées avec des résines époxy ou de polyester (4). Et jusqu’à présent notamment aux États-Unis elles terminent en enfouissement.

Plusieurs voies sont explorées :

Mécaniques, pour les pales renforcées en fibres de verre

  • le broyage : la pale est découpée en morceau puis dans un broyeur à couteau transformée en poudre ou granulés et brulés en cimenterie par exemple ou enfouis.
  • les fibres de verre courtes peuvent être utilisées comme renfort dans le béton dans le mobilier urbain ou enrobés routiers. Mais une fois séparées les fibres perdent une partie de leurs propriétés mécaniques.

Chimiques, pour les pales renforcées en fibres de carbone

La fibre de carbone (5) change les données économiques, car bien que de plus en plus utilisée elle reste cependant coûteuse et sa récupération même complexe a un coût élevé. Cela justifie une opération de recyclage. On peut alors trouver plusieurs procédés :

  • la solvolyse à haute pression et à 200°-300°c par l’eau supercritique (6), celle-ci devient un solvant qui dissous les composés organiques comme les résines thermodurcissables des pales et permet de séparer les fibres de carbone de la matrice qui peuvent être récupérées.
  • la pyrolyse entre 400° et 700°C en milieu semi confiné on « distille » la résine en oléfines, huiles et goudrons et on récupère la fibre de carbone qui n’a pas été oxydée.
  • l’écoconception par l’utilisation d’une résine thermoplastique de type polyacrylate comme Elium℗ d’Arkema (7). Lors de la fabrication de la pale la résine liquide est déposée dans le moule sur les tissus et fibres de carbone, on y ajoute le catalyseur de polymérisation qui se fait à température ambiante et en quelques dizaines de minutes. L’avantage est d’utiliser les mêmes outils de conception que pour le thermodurcissable mais sans dépense d’énergie et la réparabilité à froid en cas de dommage est assurée. En fin de vie deux solutions : un procédé de broyage et d’ajouts aux granulés de polymères compatibles comme le PMMA ou l’ABS mené par la plateforme Canoe et l’ICMCB conduit à des nouveaux objets composites ; seconde solution, par chauffage des fragments du composite broyé, on peut aussi dépolymériser le thermoplastique et récupérer le monomère séparé des fibres, des colles et peintures (8).

Si d’ici 2030 on estime à plus de 35000 tonnes de pales issues du démantèlement en Europe et en France à un flux de 1500 t en 2029 nous avons en innovation chimique du pain sur la planche ! D’autant qu’il n’y a pas encore de vraies filières d’économie circulaire (9) pour les matériaux composites non seulement pour les pales d’éoliennes mais aussi pour l’industrie nautique - les coques de bateaux -, aérienne - les corps des avions - et automobile où ils envahissent le marché.

Jean-Claude Bernier
Novembre 2021

Pour en savoir plus
(1) Les énergies renouvelables (vidéo du CEA série « Les Incollables »)
(2) Les chimistes dans l’aventure des nouveaux matériaux (série Les chimistes dans…, mediachimie.org)
(3) Vitesse de déploiement et acceptabilité des nouvelles technologies dans le domaine des énergies, Grégory De Temmerman, Colloque Chimie et énergies nouvelles (février 2021)
(4) Matériaux composites à matrice polymères, d'après la conférence de Patrice Hamelin, La chimie et l’habitat, EDP Sciences (2011)
(5) Les matériaux dans le sport (r)évolutionnaires ! Patrice Bray, Odile Garreau et Jean-Claude Bernier (série Chimie et … en fiches, Médiachimie.org), d’après l’article de Y. Rémond et J.-F . Caron, in La chimie et le sport, EDP Sciences (2011)
(6) Les fluides supercritiques à votre service, S. Sarrade et K. Benaissi, L'Actualité Chimique n°371-372 (2013) p. 72
(7) Les matériaux de la transition énergétique : les attentes et les défis, J.-P. Moulin, Colloque Chimie et énergies nouvelles (février 2021)
(8) Le prix Pierre Potier des lycéens 2020 (Vidéo YouTube)
(9) Les chimistes dans l’économie circulaire (série Les chimistes dans…, mediachimie.org)

Crédits : image d'illustration, licence CC0, PxHere

- Événements
mediachimie

Colloque Chimie et énergies nouvelles

Les versions écrites et vidéos des conférences du colloque « Chimie et énergies nouvelles » sont en ligne sur Mediachimie. Notre futur énergétique fait actuellement l’objet de débats dans tous les media, et dans les
...

Les versions écrites et vidéos des conférences du colloque « Chimie et énergies nouvelles » sont en ligne sur Mediachimie.

Notre futur énergétique fait actuellement l’objet de débats dans tous les media, et dans les milieux politiques et économiques. C’est un sujet fondamental pour la Société, l’Industrie, l’Économie et aussi pour la Formation des jeunes puisque l’énergie est l’un des principaux thèmes des programmes de terminales des différentes filières scientifiques.

Nous avons souhaité faire un point scientifique objectif sur les principaux thèmes de ces débats dans les conférences du colloque « Chimie et énergies nouvelles ». Les conférenciers ont été choisis parmi les meilleurs experts de la Recherche, de l’Industrie, et de la Politique économique.

Pour faire face aux besoins toujours croissants de la demande d’énergie en dépits d’économies envisagées et garantir l’accès de tous à des services énergétiques fiables et à des couts abordables, toutes les énergies décarbonnées flexibles, propres, abondantes capables de se substituer aux énergies fossiles seront nécessaires. Pour cela il est urgent d’innover mais aussi d’optimiser les technologies existantes en lien avec le développement durable :

Ces questions et beaucoup d’autres ont été traitées par les conférenciers pour faire de ce colloque un outil d’information objectif et un outil d’actualisation des connaissances utilisable par un large public.

- Question du mois
mediachimie

Comment colorer des bonbons en bleu ? Une application de la spiruline

Les bonbons et dragées se font une part belle dans le monde des sucreries, et au premier regard, leurs couleurs nous incitent à les goûter. Nous connaissons tous ces petits personnages bleus de BD, logeant dans un village
...

Les bonbons et dragées se font une part belle dans le monde des sucreries, et au premier regard, leurs couleurs nous incitent à les goûter.

Nous connaissons tous ces petits personnages bleus de BD, logeant dans un village champignon et aussi déclinés en bonbons ! Mais comment les colorer en bleu ?

Caractéristiques physico-chimiques nécessaires pour être un colorant utilisable dans un bonbon

Le bonbon est par exemple constitué d’une solution aqueuse à laquelle on ajoute un colorant alimentaire, du sucre et de la gélatine à chaud. Les molécules colorées susceptibles d’être utilisées doivent pouvoir se disperser de façon uniforme au sein de la gélatine, résister aux différents traitements lors de la fabrication du bonbon et sur le long terme résister à la lumière et à l’oxygène de l’air.

Qu’en est-il du bleu patenté V ? (1)

Le bleu patenté V (i), au nom de code E 131, est un colorant alimentaire de synthèse, soluble dans l’eau. Il donne un bleu vif et répond à toutes les caractéristiques nécessaires précédemment citées. Il est ou a été le colorant bleu de nombreux bonbons et autres aliments et boissons. Mais Il est soupçonné d’un potentiel allergène. Son utilisation est réglementée en Europe et sa dose journalière admissible (DJA) a été diminuée en 2013 à 5mg/kg de masse corporelle (ii) par l'Autorité européenne de sécurité des aliments (EFSA).
Compte tenu que les enfants sont les principaux consommateurs de bonbons et que la demande du public vers des produits d’origine naturelle est forte, certains fabricants ont cherché à remplacer ce colorant par un autre issu d’une ressource naturelle, ce qui est effectif depuis 2020 pour les petites créatures bleues !

Le bleu dans les plantes sauvages

Même si bleuet, jacinthe des bois, myosotis, mûres et myrtilles …nous évoquent la couleur bleue, la nature nous offre très peu cette couleur parmi les plantes sauvages. Et si on arrive à en extraire les molécules responsables de leur couleur encore faut-il qu’elles répondent aux caractéristiques nécessaires à leur utilisation et que la matière première soit abondante. On comprend bien alors que ces plantes ne vont pas répondre à la demande.

La spiruline

La recherche a été longue pour trouver un composé naturel fournissant un bleu stable, répondant à tous les critères y compris l’innocuité et dont la production puisse être notable. La spiruline alimentaire s’est avérée le bon candidat. La spiruline est un ensemble de cyanobactéries (iii) alimentaires procaryotes (iv) qui se reproduisent dans des eaux chaudes (35 à 40°C) peu profondes et saumâtres (on parle aussi de microalgues) (v). Il existe plusieurs types de souches de bactéries et selon les zones géographiques (vi) et les conditions de production, la composition chimique varie (2). Toutefois en résumé les spirulines sont avant tout très riches en protéines. Elles contiennent également des glucides, un peu de lipides, des vitamines, des sels minéraux et des pigments. Ces différents constituants sont indépendamment recherchés pour des applications diverses (santé, alimentation, pigments, aquaculture, cosmétique…).

La couleur bleue issue de la spiruline

La spiruline contient d’une part des pigments verts (chlorophylles) et oranges (bêta-carotènes) et parmi les protéines qui la constituent il y a des phycocyanines qui possèdent un groupe chromophore bleu fixé à la chaine protéïque.

Les bêta-carotènes s’oxydent à l’air, les chlorophylles se dégradent à la lumière. Par contre les phycocyanines sont d’une part des anti-oxydants et d’autre part plus résistantes à la photo-destruction. Ainsi la spiruline séchée et longtemps exposée à l’oxygène de l’air et à la lumière, devient bleutée. Les phycocyanines représentent 12 à 17 % en masse (selon la souche) de la spiruline séchée.

La spiruline la plus utilisée est celle issue de microorganismes Arthrospira platensis. On en extrait (vii) tout particulièrement la C-phycocyanine qui, purifiée, concentrée et séchée, donne une poudre bleue, utilisée comme colorant alimentaire.
La C-phycocyanine peut très schématiquement être représentée selon

Chaine protéinique (viii)― groupe chromophore bleu

La structure de son groupe chromophore est représentée ci-contre (source https://www.rcsb.org/ligand/CYC)

La C-phycocyanine a été autorisée en 2013 par la FDA comme colorant alimentaire des gommes et bonbons et est en 2020 le seul colorant bleu naturel autorisé aux USA, Europe et Chine dans des applications alimentaires telles que les pâtisseries (glaçage, nappage…) laitages, gélatines, céréales…, des applications pharmaceutiques (enrobages de produits) et cosmétiques.

La phycocyanine est aussi très recherchée pour son pouvoir anti-oxydant.

Alors bonne dégustation, mais attention au sucre !

Françoise Brénon

 

 

(i) Le bleu patenté est utilisé sous forme de sel de calcium Ca(C27H31N2O7S2)2 ou de sodium Na(C27H31N2O7S2).
Sa formule développée est page 8 https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2013.3108

(ii) Source Avis scientifique sur la réévaluation du brevet Blue V (E 131) en tant qu’additif alimentaire EFSA Journal (2013)

(iii) Les cyanobactéries (cyano du grec ancien kyanos signifiant bleu) sont des bactéries qui synthétisent leurs molécules organiques comme les plantes, par photosynthèse. Afin de capter la lumière, elles utilisent des pigments présents dans leurs structures.

(iv)Un procaryote est un microorganisme unicellulaire dont la structure cellulaire ne comporte pas de noyau.

(v) Elles ont une configuration spatiale en forme d’hélice d’où le nom spiruline dérivant du latin spira (enroulement).

(vi) En 2018 la production mondiale provient de Chine à plus de 50 % (2). Parmi les autres pays producteurs, citons les USA (Hawaï), le Mexique, la Thaïlande… La France en produit en très petits tonnages.

(vii) Plusieurs procédés d’extraction sont possibles (2) et (3). Après une destruction de la membrane de la bactérie (désintégration cellulaire) tout en évitant la dénaturation des protéines, il faut séparer les protéines solubles dans l’eau, ce qui est le cas des phycocyanines, des autres protéines liposolubles et des lipides. Pour ceux-ci on essaie d’éviter des solvants organiques à impact environnemental. L’extraction à l’aide de CO2 supercritique répond par exemple à ce critère.

(viii) La structure de sa chaine protéïque est répertoriée sur le site PDB (Protein Data Bank) RCSB PDB - 1GH0: STRUCTURE CRISTALLINE DE LA C-PHYCOCYANINE DE SPIRULINE PLATENSIS
 

 

Pour en savoir plus
(1) Couleur et coloration des aliments, une simple affaire de chimie ? de Sylvain Guyot, La chimie et l’alimentation (EDP Sciences)
(2) Spiruline : Culture, production et applications, document très complet sur le sujet par Maryline Aber Vian, Techniques de l’Ingénieur  publié le 10/03/2021
(3) Évaluation des méthodes d’extraction de la phycocyanine et son rendement à partir de spirulina platensis de Imène Lafri et coll., Agrobiologia

- Éditorial
mediachimie

Un prix Nobel de chimie «asymétrique»

Le prix Nobel de chimie 2021 vient d’être attribué à deux chimistes un allemand Benjamin List et à un américain David MacMillan, pour « avoir développé un outil de construction de molécules : l’organocatalyse
...


Le prix Nobel de chimie 2021 vient d’être attribué à deux chimistes un allemand Benjamin List et à un américain David MacMillan, pour « avoir développé un outil de construction de molécules : l’organocatalyse asymétrique ». L’Académie Nobel couronne ainsi deux secteurs très actifs de la chimie : la catalyse et la chimie asymétrique.

Pour fabriquer des molécules, qui nécessitent souvent un enchaînement de plusieurs réactions, que ce soit au laboratoire ou dans un procédé chimique industriel, on cherche à diminuer le nombre d’étapes et à les accélérer sans pour autant augmenter la température du milieu réactionnel. Pour cela on fait appel à des catalyseurs (1). Ces catalyseurs étaient souvent des métaux ou des complexes de métaux de transition, par exemple le platine pour les piles à hydrogène ou le rhodium pour les pots catalytiques. Or dans la nature il existe des enzymes capables de synthétiser des molécules complexes asymétriques comme le cholestérol ou la chlorophylle et tout à fait exemptes de métaux.

Avant d’aller plus loin, parlons de molécules asymétriques (2) (3). Ce sont des molécules présentant les mêmes atomes et les mêmes enchainements de liaisons mais qui dans les 3 dimensions ne sont pas superposables à leur image obtenue par symétrie par rapport à un miroir plan. Il en est ainsi de nos mains droite et gauche. Ces molécules sont dites chirales et les deux images ou molécules « miroir » sont des isomères appelés énantiomères. Or souvent ces deux molécules n’ont pas la même propriété. L’exemple le plus connu est celui du limonène. La configuration atomique R a un parfum d’orange et S de citron. En pharmacie ou en parfumerie il est essentiel de synthétiser l’isomère qui possède la propriété et pas l’autre d’où les applications de la catalyse asymétrique.

Les deux chercheurs ont essayé de résoudre cette énigme en utilisant des catalyseurs organiques simples et sans métaux. Benjamin List en observant les propriétés des enzymes doués de chiralité s’est aperçu que seuls quelques-uns de leurs acides aminés avaient une action. Il a essayé alors la proline un acide aminé simple comme catalyseur dans une réaction d’aldolisation (4), et chic ! Dans le produit de réaction un isomère présentant la même chiralité que son catalyseur était largement dominant.

À des milliers de kilomètres de là, David MacMillan était un spécialiste des catalyseurs métalliques asymétriques, coûteux et difficiles à appliquer industriellement. Il a alors testé des molécules organiques comportant un atome d’azote au sein d’une structure de type ion iminium attracteur d’électrons. Sur plusieurs essais il a constaté que certaines d’entre elles favorisaient l’une des molécules miroir à plus de 90%. Il venait aussi indépendamment de son collègue allemand d’inventer « l’organocatalyse organique ».

À leur suite se sont développées de nombreuses applications de molécules chirales aux propriétés essentielles en pharmacologie pour de nouveaux médicaments, en chimie des parfums pour la cosmétique, avec des procédés plus respectueux de l’environnement.

Un petit point d’histoire, c’est en 2001 que le prix Nobel de chimie avait été attribué pour la catalyse asymétrique à Knowles, Noyori et Sharpless via des complexes organométalliques.

Jean-Claude Bernier
7/10/2021

Pour en savoir plus
(1) Chimie et symétrie : chiralité, Dmitri Savostianoff, Chimie Paris n°337 (2012) p. 3-5 (lien vers http://www.mediachimie.org/ressource/chimie-et-sym%C3%A9trie-chiralit%C3%A9), les autres liens marchent)
(2) Polymères supramoléculaires et catalyse asymétrique, M. Raynal et L. Bouteiller, L’Actualité chimique n°430-431 (juin-juillet-août 2018) pp. 37-41
(3) Zoom sur la chiralité et la synthèse asymétrique (J.-P. Foulon, site Mediachimie.org)
(4) Comment passer de la musique à la chimie ? La réaction d’aldolisation (J.-P. Foulon, site Mediachimie.org)
 

Crédit illustration : Benjamin List and David W.C. MacMillan. Prix Nobel de Chimie 2021. Ill. Niklas Elmehed © Nobel Prize Outreach.

- Éditorial
mediachimie

Le Plomb 212 pour une nouvelle radiothérapie ciblée

Lorsqu’une tumeur cancéreuse est détectée dans l’organisme il y a plusieurs stratégies pour l’éliminer : la chirurgie d’abord mais souvent associée à deux autres traitements, la chimiothérapie et la radiothérapie. Car
...

Lorsqu’une tumeur cancéreuse est détectée dans l’organisme il y a plusieurs stratégies pour l’éliminer : la chirurgie d’abord mais souvent associée à deux autres traitements, la chimiothérapie et la radiothérapie. Car même si l’essentiel de la tumeur a été retiré, l’amas de cellules cancéreuses peut être éliminé par la prise de médicaments qui réduisent ou stoppent la division cellulaire, c’est la chimiothérapie (1), ou bien localement par irradiation des cellules à l’aide de rayonnements énergétiques fournis par des isotopes radioactifs, c’est la radiothérapie (2).

Les inconvénients de ces méthodes sont connus. Les molécules toxiques utilisées en chimiothérapie atteignent non seulement les cellules cancéreuses mais également toutes les cellules du corps d’où des effets secondaires. Les rayonnements issus des sources radioactives sont soit des électrons (rayons β) ou des rayons X ou des rayons γ (3) qui provoquent des lésions sur les brins d’ADN dans les noyaux des cellules cancéreuses plus ou moins bien ciblées.

Les traitements peuvent être externes mais pour ne pas irradier la peau du patient on peut injecter un produit radioactif qui va attaquer les cellules cancéreuses, par exemple l’iode 131 pour la thyroïde, ou le phosphore 32 en cas de leucémie.

La particularité du traitement qui fait appel au plomb 212 vient du fait que le rayonnement énergétique est apporté par des particules α constituées de 2 protons et de 2 neutrons, bien plus grosses que les électrons et bien plus énergétiques mais que leur propagation se limite à quelques centaines de microns dans le corps.

 Particules βParticules α
compositionélectrons2 neutrons + 2 protons
énergie0,1 KeV.µm-1100 KeV.µm-1
parcours dans le corpsQuelquesmmquelques microns

Tableau comparatif des rayonnements

On voit alors vite les avantages des particules α très ionisantes. Elles peuvent plus facilement dégrader l’ADN d’une cellule cancéreuse, et comme leur distance de propagation est mille fois plus petite que celle des électrons, la zone irradiée est comparable à la taille de la cellule que l’on veut ioniser sans que les cellules saines à côté ne soient touchées.

Les émetteurs de particules α semblent donc idéales pour le traitement de certains cancers à condition d’en trouver suffisamment de sources et de pouvoir les guider jusqu’aux cellules cancéreuses.

C’est ici qu’intervient la découverte d’un chercheur d’Areva (maintenant Orano) qui cherchait à valoriser des tonnes de minerai de thorium (4) qui leur restaient après extraction de l’uranium. L’idée de l’alphathérapie a ainsi germé dans les années 2006 et elle s’est précisée en 2012 et 2014 par des partenariats en oncologie avec des laboratoires pharmaceutiques européen et américain de la filiale Orano Med (5) en charge du développement industriel.

La chaine de désintégration du thorium (6) est un peu complexe et conduit à de nombreux intermédiaires.

232Th→ 228Ra + α        228Ra → 228Ac + β         228Ac →228Th + β        228Th → 224Ra + α
224Ra → 220Rn + α         220Rn →216Po + α    Pour aboutir ensuite au Plomb 212 216Po → 212Pb + α --

Cet isotope est assez bien placé pour une utilisation radiopharmaceutique puisqu’il a une demi-vie de 11 h et se désintègre au bout d’une semaine donnant d’abord le bismuth 212 et enfin le plomb 208 en libérant des particules α.

Les séparations et extractions sont complexes et un fût de 350 kg de thorium 232 ne donne in fine que quelques dizaines de milligrammes de plomb 212.

Il faut ensuite guider ce « radio-émetteur » vers les cellules cancéreuses. Or celles-ci génèrent à leur surface des antigènes contre lesquels il faut apporter des anticorps capables de les reconnaitre.

La stratégie est d’abord de trouver un ligand du 212Pb qui puisse le chélater (*) pour éviter tout relargage du plomb dans le corps. C’est le TCMC (**) qui a été choisi car il a, de plus, la propriété de se coupler assez facilement avec des anticorps monoclonaux (***) qui vont reconnaître les antigènes produits uniquement à la surface des cellules cancéreuses (7) (8). Une fois les anticorps synthétisés on greffe à leur surface le complexe (TCMC-212Pb) et le vecteur ainsi formé va voyager dans le corps jusqu’à reconnaitre les cellules cancéreuses, et celles-là seulement, et les éliminer par le rayonnement α en préservant les cellules saines (9).

 
Schématisation de l'interaction antigène/anticorps dans une immunothérapie avec rayonnement α produit par le 212Pb

Les essais cliniques sont en cours aux États-Unis et bientôt en Europe. La filiale Orano Med investit en France plus de 100 M€ en Haute Vienne pour une plateforme industrielle dénommée ATEF (Advanced Thorium Extraction Facility) avec salle blanche répondant aux règlements de l’ANSM pour obtenir la qualification d’Établissement Pharmaceutique. L’ambition est de mettre sur le marché des traitements dès 2025. Les capacités de production pour plusieurs milliers de radiomédicaments sont prévues et même s’il n’y a que quelques dizaines de milligrammes de 212Pb par fût traité, Orano dispose de plusieurs milliers de fûts de thorium à valoriser où d’ailleurs la chaine des isotopes se reconstitue par radioactivité et désintégration naturelle.

Jean-Claude Bernier et Françoise Brénon
Septembre 2021

 

(*) Le cation central, ici Pb++,  entre en interaction avec une molécule appelée ligand en formant une molécule stable. Le processus est appelé chélation et le composé formé un chélate ou complexe.

 (**)

TCMC pour 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamoylmethyl)cyclododecane 

(***) Un anticorps monoclonal est anticorps synthétisé par des cellules (bactérie, levure…) sélectionnées et cultivées pour leur capacité à produire un anticorps particulier capable de traiter une maladie (Source : site Vidal).

 

Pour en savoir plus
(1) Petites et grosses molécules innovantes pour le traitement du cancer, conférence et article de Jean-Pierre Armand, Colloque Chimie et nouvelles thérapies, 13 novembre 2019
(2) La radioactivité, document du CEA
(3) Quelle dose moyenne de radioactivité reçoit-on en France, Jean-Claude Bernier (question du mois, Mediachimie.org)
(4) La découverte du thorium, J.-J. Berzelius
(5) Site de la société Orano Med
(6) La chimie pour la séparation et la gestion des déchets nucléaires, conférence et article de Bernard Boullis, Colloque Chimie et enjeux énergétiques, 14 novembre 2012
(7) Le plomb radioactif : arme de destruction ciblée des cellules cancéreuses, de Pauline Junquet et Solène Batut (site Culture Sciences Chimie)
(8) Développement d’un immunoconjugué cytotoxique ciblant le récepteur de l’IGF-1, conférence et article de Jean-François Haeuw, Colloque Chimie et nouvelles thérapies, 13 novembre 2019
(9) Les nanomédicaments : une approche intelligente pour le traitement des maladies sévères, conférence et article de Patrick Couvreur, La chimie et la santé, EDP Sciences ( 2010)

 

Crédits : Image d'illustration : Cellules cancéreuses par Sam Levin, licence CC BY 2.0 ; molécule TCMC site CultureSciencesChimie

- Éditorial
mediachimie

Chimie et pluie des records aux jeux de Tokyo

Les champions olympiques ont fait fort en athlétisme à Tokyo ! Des temps canons au 400 m haies, des records féminins battus au 100 m et 200 m, des records olympiques en demi-fond et aux 5 000 et 10 000 m, des sauts en
...

Les champions olympiques ont fait fort en athlétisme à Tokyo ! Des temps canons au 400 m haies, des records féminins battus au 100 m et 200 m, des records olympiques en demi-fond et aux 5 000 et 10 000 m, des sauts en longueur remarquables… De quoi faire mentir les spécialistes de la physiologie sportive (1) qui prévoyaient une limite humaine aux efforts et résultats sportifs.

En réalité ces progrès viennent bien sûr d’entrainements scientifiquement programmés, mais aussi d’avancées technologiques où la chimie a un grand rôle.

Prenons tout d’abord les « chaussures miracles » lancées par un grand nom de l’équipement sportif en 2020 baptisées « alphafly » ou « vaporfly » et copiées bien évidement par tous les grandes marques concurrentes. Elles ont plusieurs couches :

  • une semelle externe élastique dotée de crampons très légers disposés en forme de pentagone
  • une deuxième semelle interne rigide en composite carbone-carbone riche en fibres de carbone (2)
  • des couches de mousse en polyéther à blocs de polyamide (PEBA) (3)
  • une tige et un tissu qui maintiennent le pied en fibres imper-respirantes en PTFE (de type Gore-Tex®) (4)

Ces multicouches ont toutes une utilité : les crampons permettent d’accrocher la piste comme points d’appui pour l’élan, la mousse expansée souvent issue de polymères à blocs avec des polyamides donne l’élasticité et la légèreté à la chaussure et surtout restitue bien l’énergie aux pieds de l’athlète. De plus la semelle en carbone rigide apporte de la rigidité à la voûte plantaire et redonne aussi de l’énergie à la chaussure qui renvoie mieux et permet de mieux avancer.
Les chaussures sont un élément d’explication mais le sol et son revêtement participent aussi à l’avancée technologique. On se rappelle l’arrivée dans les années 70 des pistes en tartan, couplant un revêtement en caoutchouc et polyuréthane avec des agglomérats de gravier en sous-couches, qui ont déjà changé les performances des courses précédentes courues sur pistes cendrées. La piste à Tokyo en 2021 fabriquée sur mesure par l’entreprise italienne Mondo ne fait que 14 mm d’épaisseur. Au-dessous du polyuréthane sont disposés des granulés de caoutchouc en design hexagonal qui ménagent de petites poches d’air. La piste absorbe l’énergie des coureurs et la renvoie avec un effet « trampolino » dans le sens de la marche. Plusieurs coureurs ont dit qu’ils avaient l’impression de « courir sur de l’air » ou de « marcher sur des nuages » sur cette piste très rapide.

De plus les fabricants ont fait un réel effort de développement durable et par souci de l’environnement : les mousses de polyamides viennent d’un bioprocédé rendu célèbre par Arkema utilisant des graines de ricin (5) et leur expansion est faite par insufflation d’azote qui les garantit exempt de CFC, HCFC ou COV (*) (6). Par ailleurs le principal fabricant a mis en place une chaine de recyclage.

La conjonction des chaussures et de la piste apporte un progrès sur les temps de course en sprint et en fond de l’ordre de 2 à 4 % ce qui fait dire au roi du sprint Usain Bolt « avec ces chaussures je serais passé au 100 m sous les 9"50 ! »

Certains cependant critiquent ces records et les assimilent à du « dopage technologique » pour les privilégiés qui disposent de ces équipements. Ce n’est pas sans rappeler la polémique qui a accompagné les performances des nageurs qui étaient revêtus d’une combinaison en polyuréthane et élasthanne sur laquelle l’eau glissait comme sur les écailles de poisson (7). Elles furent ensuite interdites par les autorités des fédérations sportives internationales. Il n’en est pas de même pour ces chaussures innovantes qui avant d’être employées ont reçu l’agrément des comités sportifs et olympiques.

Il n’en reste pas moins que la discipline d’entrainement physique et psychologique des champions est très dure et pas à la portée de n’importe quel amateur. En cette fin août alors que se déroulent les jeux paralympiques que dire alors de la force morale qui anime ces athlètes handicapés qui concourent. Même si diverses prothèses de haute technologie peuvent parfois les aider (8), ce sont des années de souffrance et d’effort durant les entrainements qui leur permettent l’accès au podium.

Jean-Claude Bernier
Août 2021

(*) CFC chlorofluorocarbures, HCFC hydrochlorofluorocarbures, COV composés organiques volatils

 

Pour en savoir plus :
(1) Optimisation des performances, complexité des systèmes et confrontation aux limites, Jean-François Toussaint, in La Chimie et le sport, EDP Sciences (2011)
(2) Les composites carbone/carbone, J. Thébault et P. Olry, L’Actualité Chimique, n° 295-296 (mars-avril 2006)
(3) Comment faire des polyamides à partir de l'huile de ricin ? Du ricin au Rilsan® : une réaction de polymérisation à la française, Jean-Pierre Foulon, Réactions en un clin d’œil, Mediachimie.org
(4) Les textiles et les vêtements pour le sport, C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, in La chimie dans le sport, collection collection Chimie et... Junior (2014)
(5) La grande aventure des polyamides, J.-C .Bernier et R.-A. Jacquesy, L’Actualité Chimique n° 360-361 (février-mars 2012)
(6) Chimie atmosphérique et climat, conférence et article de Guy P. Brasseur, colloque Chimie et changement climatique, novembre 2015
(7) Des textiles pour sportifs. Apport de la chimie pour améliorer confort et performances, Fabien Roland, in La Chimie et le sport, EDP Sciences (2011)
(8) Nouvelles prothèses, Serge Lécolier, Chimie Paris n°338-339 (2012)