Mediachimie | Un prix Nobel de Physique avec un petit parfum chimique

Date de publication : Mardi 10 Octobre 2023
Rubrique(s) : Événements

Le prix Nobel de Physique 2023 a été décerné à trois chercheurs Anne L’Huillier, franco-suédoise, professeur à l’université de Lund, Pierre Agostini, professeur émérite à l’université d’Ohio et Ferenc Krausz du Max Planck Institute de Garching. Les deux premiers lauréats d’origine française ont démarré leurs recherches au CEA à Saclay. Ils ont ouvert la voie aux spectroscopies ultrarapides pour traquer les électrons et les molécules (1) lors de réactions chimiques. Ils ont pratiquement réussi à traquer les électrons par arrêt sur image lors d’un « flash » d’une durée ultra courte de l’ordre d’une attoseconde qui est d’un milliardième de milliardième de seconde (10-18 s). Lorsque l’on sait que la vitesse des électrons libres autour du noyau de l’atome est proche de la vitesse de la lumière soit 300.000 km/s (3.105 km/s) soit 3.1011 mm/s ou encore 3.1017 nm/s, une séquence de 10-18 s permet donc de « photographier » un électron avec une résolution de moins d’un nanomètre. Nous avons tous vu les images qui décomposent le saut d’un danseur étoile lors d’un ballet, c’est une succession de photos prises par une caméra à défilement rapide d’environ un millième de seconde.

Peut-on faire la même chose pour décrire le parcours d’un électron ?

Les prix Nobel répondent oui à condition d’avoir un flash tous les 10-18 secondes. Ce fut la découverte en 1988 par Anne L’Huillier d’opérer avec un laser au xénon (2) et de constater qu’il va émettre de la lumière sous forme « de génération d’harmoniques d’ordre élevé » très courtes, c’est-à-dire des émissions faibles de très hautes fréquences. C’est Pierre Agostini qui trouva le moyen de produire et de mesurer ces impulsions laser ultra courtes au Laboratoire d’Optique Appliquée du CEA en 2001. Les mesures donnaient alors un temps de 250 attosecondes à ces impulsions. Ferenc Krausz à Vienne, à cette même époque, mesura aussi quelques centaines d’attosecondes à ces impulsions similaires.

Quelles applications sont alors possibles ?

En observant et en contrôlant la présence d’un électron dans un matériau dans une molécule il serait possible d’en changer son état ou ses propriétés. Déjà fin 2020 des chercheurs de Rennes utilisant un laser rayons X ultra rapide avec des impulsions de la femtoseconde (10-15 s) avaient pu observer un transfert d’électron entre le fer et le cobalt dans une molécule de « bleu de Prusse » mixte (FeCo)4[Fe(CN)6]3 qui en changeait les propriétés magnétiques.

Avec des impulsions mille fois plus courtes la précision de la position de l’électron doit encore être meilleure. On peut aussi avec ces impulsions ultra courtes savoir près de quel atome se trouve l’électron et sans violer le principe d’Heisenberg le transférer sur un autre pour par exemple transformer un diélectrique en semi-conducteur (3). On peut ainsi avec l’imagination rendre plus efficace certaines réactions chimiques ou catalytiques. Cette nouvelle forme de spectroscopie ultra précise pourrait être utilisée pour déceler les prémices d’un cancer sur un échantillon sanguin (4). Elle devrait aussi permettre de mieux étudier l’état électronique de molécules biologiques comme l’ADN.

Cette nouvelle physique des temps ultra courts nous ouvre un domaine encore inexploré celui des mouvements électroniques autour des atomes et des molécules (5) que de nombreux chimistes aimeraient maitriser avec des retombées immenses en recherche fondamentale et appliquée.

Jean-Claude Bernier
octobre 2023

 


Les mouvements des électrons dans les atomes et les molécules sont si rapides qu’ils sont mesurés en attosecondes. Une attoseconde est à une seconde ce qu'une seconde est à l’âge de l’univers. © Johan Jarnestad/The Royal Swedish Academy of Sciences.

 

Pour en savoir plus
(1) L’atome boite à électrons (video, La Physique Autrement)
(2) Nouvelles techniques d’imagerie laser, M. Blanchard-Desce, Colloque La Chimie et la santé, Fondation de la Maison de la chimie (2010)
(3) La chimie à la lumière du laser : un intérêt réciproque, S. Forget, conférence et article, Colloque Chimie et lumière, Fondation de la Maison de la chimie (2020)
(4) Nano-diagnostic (vidéo, Des idées plein la Tech)
(5) Voir l’infiniment petit : les outils pour le nanomonde (vidéo CEA)

 

Crédit : Pierre Agostini, Ferenc Krausz et Anne L'Huillier. Prix Nobel de Physique 2023. Ill. Niklas Elmehed © Nobel Prize Outreach.