Ballon de l’Euro 2016
- Éditorial

Beau Jeu, un ballon chimique ?

437 grammes, 69 cm de circonférence, c’est « Beau Jeu » le ballon de l’Euro 2016. C’est le petit frère de « Brazuca », le ballon de la Coupe du monde 2014 au Brésil et de « Albert » à Londres en 2012 (1). Il est composé
...

437 grammes, 69 cm de circonférence, c’est « Beau Jeu » le ballon de l’Euro 2016. C’est le petit frère de « Brazuca », le ballon de la Coupe du monde 2014 au Brésil et de « Albert » à Londres en 2012 (1). Il est composé de six pièces de polyuréthane de type Impranil mais avec des nouveautés ;sur les cinq couches successives, l’une est faite d’une mousse avec des millions de sphères apportant une superbe élasticité (2).

Les ingénieurs et techniciens ont réussi à faire un ballon parfaitement rond en juxtaposant par thermosoudure six faces carrées à arêtes courbes en retrouvant le théorème mathématique d’Alexandrov-Pogorelov. C’est pourquoi on parle parfois du « ballon cubique » mais parfaitement sphérique. Cependant, pour avoir des trajectoires maîtrisées, la couche externe du ballon est faite de minuscules croisillons en polyuréthane sur un substrat spécial de polyester-coton (3). Un ballon de football n’adopte pas en général une trajectoire parabolique, mais triangulaire, dite « tartaglia », du nom d’un mathématicien italien Niccolò Fontana, dit Tartaglia (« Le Bègue »), car la frappe moyenne des joueurs internationaux implique une vitesse initiale du ballon de 80 à 90 km/h supérieure à la vitesse de lévitation. Pour éviter que le ballon ne « plane », les minuscules aspérités perturbent la trainée dans l’air et permettent aux joueurs adroits de faire tourner le ballon sur lui-même et d’atteindre la lucarne des buts en trompant les gardiens.

Il n’y a pas que le ballon qui mobilise la chimie (4), les chaussures des joueurs en sont un concentré. Elles doivent être légères et solides. La semelle est en fibre de carbone (5) sur laquelle les crampons sont directement moulés (6). La chaussure elle-même est en fibres de polyisocyanate ou de polyester tissées, montant parfois pour protéger la cheville (7), douce à l’intérieur, légèrement rugueuse à l’extérieur pour pouvoir imprimer au ballon l’effet de rotation voulu par le joueur. Les maillots et short eux-mêmes sont en fibres thermorégulées, certains comportent des parties élastiques qui mettent les muscles en micro-compression (8) en assurant un léger massage anti-fatigue (9). Les prochaines avancées informatiques dont sont déjà munies certaines équipes sont les exploitations de données. Le petit GPS dans le col du maillot et les microcapteurs physiologiques connectés (10) enregistrent en ligne des données (11) sur chaque joueur : déplacements, vitesse, rythme cardiaque, fatigue…

Vive l’euro 2016, chimique et électronique, mais in fine c’est le talent des joueurs qui nous régale.

Jean-Claude Bernier
Juin 2016

Quelques ressources pour en savoir plus :


(1) L’histoire d’Albert, le ballon de foot des jeux olympiques (vidéo, 8:14)
(2) Le plastique qui recycle le CO2 (vidéo, 6:11)
(3) Les matériaux composites dans le sport
(4) La chimie et le sport autour du monde
(5) Les allotropes du carbone : une grande famille
(6) Technologie et performance sportive
(7) Des textiles pour sportifs. Apport de la chimie pour améliorer confort et performances
(8) L’intelligence textile (vidéo, 7:14)
(9) Un tissu anti- courbature (vidéo, 7:18)
(10) Les polymères se réveillent pour l’électronique ! (vidéo, 31:44)
(11) Chemical World Tour 3 : nos tablettes un condensé de chimie !
 

Granulés et de comprimés de charbon actif
- Éditorial
mediachimie

Un charbon très tendance

Alors que les grands opérateurs d’électricité veulent arrêter les centrales thermiques au charbon et que les États jurent de ne plus les subventionner, le charbon (1) s’ouvre à une nouvelle carrière. Il ne s’agit
...

Alors que les grands opérateurs d’électricité veulent arrêter les centrales thermiques au charbon et que les États jurent de ne plus les subventionner, le charbon (1) s’ouvre à une nouvelle carrière. Il ne s’agit évidemment pas du même charbon, mais du charbon actif (2).

Le charbon actif est un carbone presque pur obtenu par carbonisation à haute température de 600 à 800 °C de produits végétaux, comme des coques de noix ou des bambous, et par, une seconde opération, pour ouvrir des pores par oxydation ménagée à la vapeur d’eau ou au CO2.

On trouve le charbon actif sous forme de poudre ou en grains, avec une propriété essentielle : la surface spécifique est très grande de 500 à 1500 m2 par gramme ! Cela lui donne un pouvoir d’absorption étonnant, largement utilisé pour la dépollution et la purification de l’eau (3). Les cartouches de certaines carafes en sont faites ; elles absorbent les ions clhorure Cl- et donnent un meilleur goût à l’eau potable (4).

On connaît aussi son utilisation en pharmacie (5) : le charbon médicinal est du charbon actif en granulés qui fait merveille contre les problèmes intestinaux, maux de ventre, ballonnements et diarrhée. C’est l’une des spécialités pharmaceutiques les plus anciennes (6). Mais aux États-Unis, et bientôt en France, on vante les mérites des cures au charbon. La « charcoal limonade » et les cocktails à la poudre noire font un malheur. Pour détoxifier l’organisme, nettoyer à fond les substances indésirables dans le sang et même éviter la gueule de bois après une soirée trop arrosée, les jus de fruits au charbon et les crèmes de légumes noircies sont très mode. Le pouvoir absorbant et son origine naturelle (7) font débarquer le charbon actif dans la cosmétique (8), il absorbe le sebum et impuretés de la peau. Le gommage au charbon est primeur chez les ados, les savons « charcoal » débarquent en France, préparez-vous en 2016 aux beautés charbonneuses !

Pr Jean-Claude Bernier
Mai 2016

Quelques ressources pour en savoir plus :

1) Charbon (le produit du jour de la SCF)
2) L’obtention de charbons actifs
3) L’eau, sa purification et les micropolluants
4) L’eau du robinet est–elle polluée ?
5) L’utilisation du charbon médicinal
6) Quelques spécialités pharmaceutiques centenaires
7) La nature pour inspirer le chimiste : substances naturelles, phytochimie et chimie médicinale
8) Chimie dermocosmétique et beauté
 


 

Hôtel des Invalides
- Éditorial
mediachimie

J’ai failli voir une course de formule E

Pour une fois qu’une course automobile se déroulait au pied de la Maison de la Chimie, j’ai réagi trop tard. Quinze jours avant le 23 avril, la billetterie des 20 000 places était fermée ! Le circuit dessiné en plein
...

Pour une fois qu’une course automobile se déroulait au pied de la Maison de la Chimie, j’ai réagi trop tard. Quinze jours avant le 23 avril, la billetterie des 20 000 places était fermée ! Le circuit dessiné en plein Paris autour des Invalides fait un peu moins de 2 km avec quatorze virages et devait être parcouru 45 fois pour une course de 87 km.

C’est la première fois que la très sérieuse FIA (Fédération Internationale de l’Automobile) organisait à Paris une course automobile qui compte pour le championnat du monde de F E (avec E comme électrique). Elle a rassemblé 18 monoplaces électriques capables de tourner à 225 km/h et qui atteignent 100 km/h en moins de 3 secondes. Plusieurs jours avant, un bitume (1) provisoire avait recouvert les plaques d’égouts et les pavés, et des vibreurs avaient été placés dans les virages. L’an passé, les bolides étaient semblables et fabriqués par une entreprise française : Spark Racing Technology. Cette année, seuls les châssis en aluminium et fibres de carbone (2) de chez Spark étaient communs. Les carrosseries, très profilées en composites classiques (3) et carbone-carbone (4), étaient au choix des écuries. Les moteurs électriques (5) d’une puissance de 230 à 270 cv étaient majoritairement fabriqués par McLaren Applied Technologies mais les motopropulseurs qui peuvent délivrer 150 kW en mode course et 180 kW en cours de « Fan Boost » étaient d’origines diverses. Le pack de batteries performantes (6) capable de stocker de l’ordre de 30 kWh est encore insuffisant pour la totalité du parcours ; aussi, à mi-course, les pilotes changent de monture. Les pneus de 18 pouces sont spécifiques (7), c’est Michelin qui les fournit.

Quatre écuries principales sont en compétitions : deux françaises, Renault et DS, et Venturi (Monaco), Audi Sport (Allemagne). De jeunes coureurs parfois aux noms célèbres conduisent ces bolides. Le podium du grand prix de Paris est :

  • 1er - Lucas di Grassi sur Schaeffler Audi Sport
  • 2e - Jean-Éric Vergne sur DS Virgin Racing
  • 3e - Sébastien Buemi sur Renault

Toutes ces nouvelles voitures de course sont bourrées d’innovation grâce à la chimie (8) et soyons sûrs que nous les retrouverons d’ici quelques année sur nos véhicules électriques.

Pr Jean-Claude Bernier
Mai 2016

Quelques ressources pour en savoir plus :

1) Les infrastructures des transports : les apports de la chimie dans les projets d’avenir
2) Les alliages d’aluminium pour l’allègement des structures dans l’aéronautique et la carrosserie automobile
3) Les matériaux composites dans le sport
4) Les composites carbone/carbone
5) Le moteur électrique comparés aux moteur thermique : enjeux et contraintes
6) Stockage de l’électricité : élément clé pour le déploiement des énergies renouvelables et du véhicule électrique
7) Le pneumatique : innovation et haute technologie pour faire progresser la mobilité
8) L’industrie chimique au service de l’automobile
 

Biogaz
- Éditorial
mediachimie

Le biogaz, une énergie d’avenir ?

Le biogaz est le produit de la dégradation de matières organiques par des micro-organismes anaérobies (sans oxygène). Le gaz des marais, les produits gazeux de la fermentation des ordures ménagères et le gaz de fumier
...

Le biogaz est le produit de la dégradation de matières organiques par des micro-organismes anaérobies (sans oxygène). Le gaz des marais, les produits gazeux de la fermentation des ordures ménagères et le gaz de fumier sont différents exemples de biogaz. Le point commun est la présence de méthane CH4 (1) à des teneurs comprises entre 35% et 75%. On sait aussi que le méthane est un gaz à effet de serre qui a un forçage radiatif 25 fois plus élevé que le gaz carbonique CO2 (2). C’est pourquoi on impose aux décharges d’ordures ménagères fermées et recouvertes d’être munies d’un réseau de captage du gaz, soit brûlé en torchère, soit valorisé pour le chauffage urbain ou pour produire de l’électricité (3). En France il existe 243 installations de stockage de déchets non dangereux (ISDND) dont le potentiel énergétique annuel est estimé à 7 TWh, mais seules 68 valorisent le gaz pour une production inférieure à 4 TWh.

À côté de ces installations existent des méthaniseurs de fermentation industrielle (4). Ils mettent en œuvre la méthanisation des boues des stations d’épuration (STEP) (5), des effluents organiques des industries agro-alimentaires, des effluents et des déchets agricoles. Ces digesteurs industriels utilisent plusieurs types de bactéries, les mésophiles actives entre 30°C et 40°C, les thermophiles qui travaillent entre 50°C et 65°C. Les réactions commencent par la dégradation des sucres, des protéines, des lipides par des enzymes hydrolytiques (6). Elles se poursuivent avec la production d’acides gras et d’acide acétique par les bactéries acidogènes (7). Les bactéries méthanogènes prennent le relais et à partir de CH3-COOH, CO2 et H2 produisent le méthane CH4. Ces réactions sont très fragiles, elles nécessitent un contrôle soigné des intrants car des variations brutales peuvent bloquer la réaction et empêcher sa reprise.

En France, plusieurs freins, souvent économiques, ont été des obstacles à leur développement. Sur 19 500 stations d’épuration, seules 4000 sont de taille suffisante justifiant l’investissement d’un digesteur (8). La purification (9) et l’élimination du CO2, de H2S et des siloxanes (qui sont à l’origine de la formation de SiO2, véritable abrasif catastrophique pour les moteurs et turbines) pour obtenir 98% de méthane plombe la rentabilité. Malgré cela, la nouvelle loi de transition énergétique prévoit la création de 30 usines de méthanisation et 1000 méthaniseurs d’ici 2020 avec les subventions du fonds chaleur et du fonds déchets.

Pr Jean-Claude Bernier
avril 2016

Quelques ressources pour en savoir plus :

1) Méthane (produit du jour de la SCF)
2) Le dioxyde de carbone la molécule-clé de la chimie du développement durable
3) Le biogaz : un avenir pour les déchets ménagers ?
4) Faire du déchet une ressource, un enjeu pour l’industrialisation des filières et territoires en France
5) Biochimie naturelle et traitement de l'eau : de la chimie des écosystèmes et des cocktails…
6) Un exemple de réaction biochimique : les enzymes mènent la danse
7) Étude sur les mycodermes. Rôle de ces plantes dans la fermentation acétique
8) Responsable de production en biotechnologie (vidéo, 2:19)
9) Charbon actif et traitement des eaux

© Pierre JACQUET/CEA
- Éditorial
mediachimie

Les batteries sodium–ion

Des chercheurs français du réseau RS2E qui groupe des laboratoires publics du CNRS et du CEA avec des industriels ont dévoilé fin 2015 les premiers prototypes de batteries sodium-ion sous le format standard 18650 utilisé
...

Des chercheurs français du réseau RS2E qui groupe des laboratoires publics du CNRS et du CEA avec des industriels ont dévoilé fin 2015 les premiers prototypes de batteries sodium-ion sous le format standard 18650 utilisé notamment dans les ordinateurs portables. Cette information ne vous dit peut-être rien, mais sachez que dans le monde, de nombreux chercheurs planchent sur cette technologie alternative aux batteries lithium–ion (1). Ces dernières (2), fabriquées sur une invention française au Japon, en Corée et en Chine, à des centaines de millions d’exemplaires ont ce même standard sous la forme d’un cylindre de 1,8 cm de diamètre et de 6,50 cm de longueur.

Les batteries sodium–ion fonctionnent sur le même principe : les ions sodium comme le lithium migrent à travers un électrolyte d’une électrode à l’autre au gré des cycles de charge et de décharge, et s’insèrent en douceur dans les structures cristallines de l’anode et de la cathode (3).

Plusieurs années ont été nécessaires pour innover et miniaturiser les électrodes en films très minces qui s’enroulent les uns sur les autres. Des polyanions ont été essayés, phosphates-titanates ou phosphates-vanadates fluorés. De nouvelles anodes capables d’absorber le maximum de sodium et un nouvel électrolyte polymère (4) qui transporte les ions Na+ ont été trouvés. Les solutions retenues restent évidemment secrètes car la concurrence mondiale est féroce. On sait cependant déjà que la densité d’énergie de ces prototypes est de 90 Wh/kg, comparable à celle de certaines batteries au lithium (5) et que leur durée de vie dépasse 2000 cycles de charge–décharge.

La technologie sodium (6) qui avait été écartée au tout début des années 90, à cause d’une meilleure tension par cellule pour le lithium, qui, de plus, était plus léger, revient en force pour deux raisons :

  • le lithium est relativement rare et ses ressources sont limitées à quelques pays comme la Colombie, le Chili, la Chine, alors que le sodium est abondant dans la croûte terrestre et dans l’eau des océans (NaCl) (7) ;
  • le coût de cette technologie est bien plus faible, le carbonate de sodium est 50 fois moins coûteux que le carbonate de lithium et les batteries sodium ont un créneau superbe celui du stockage statique de l’énergie renouvelable (8).

Espérons que les industriels français et européens (9) sauront saisir l’opportunité, car c’est un marché potentiel de 80 milliards de dollars qui s’offre à eux.

Pr Jean-Claude Bernier
mars 2016

Quelques ressources pour en savoir plus :

1) Meilleurs matériaux pour batterie à ions Li. L’approche déductive et inductive du chimiste
2) Des batteries au lithium plus puissantes (vidéo, 8 :36)
3) La chimie dans les batteries
4) Les polymères se réveillent pour l’électronique !
5) Lithium–ion : de nouvelles batteries antiaériennes ?
6) Le sodium (produit du jour de la société chimique de France)
7) Les ressources minérales du futur sont-elles au fond des océans ?
8) Stockage de l’électricité : élément clé pour le déploiement des énergies renouvelables
9) Où travaillent les chimistes ?

 

Tractor spray fertilize field pesticide chemical
- Éditorial
mediachimie

Pourquoi tant d’ostracisme ?

Il n’est pas de semestre sans qu’une émission de télévision ne fasse monter la peur des produits chimiques chez nos concitoyens. Récemment « Cash investigation » sur France 2 traitait à charge le sujet des pesticides dans
...

Il n’est pas de semestre sans qu’une émission de télévision ne fasse monter la peur des produits chimiques chez nos concitoyens. Récemment « Cash investigation » sur France 2 traitait à charge le sujet des pesticides dans les eaux que nous, consommateurs, buvions, à la merci de « centaines de molécules toxiques provoquant cancers, malformations, troubles… » [sic]. La journaliste (très sympathique par ailleurs) aurait dû interroger d’abord les scientifiques (1) et chimistes analystes (2) qui traquent, analysent et éliminent les molécules pour le bien être de tous. Elle aurait pu savoir ainsi que les progrès des limites de détection dans l’environnement sont passées du milligramme/litre (10-3 g) en 1960 au nanogramme/litre (10– 9 g) en 2010 (équivalent à une goutte de coca dans une piscine de 25m x 10m), ce qui permet maintenant de détecter des centaines de molécules à des concentrations infinitésimales très largement en dessous des normes sanitaires.

Il existe bien sûr un problème dans l’agriculture et l’agrochimie (3). En s’attachant à plus de rigueur, le reportage aurait pu savoir comment le contrôle rigoureux de l’eau potable dose plus de 15 pesticides tous inférieurs à 10 ng sauf l’atrazine à 20 ng (4) et que la majorité des micropolluants aux concentrations 5 à 10 fois plus abondantes sont issus de notre activité humaine, métabolites ou molécules de médicaments que nous consommons (5) (6).

Les eaux de consommation et de l’environnement sont protégées par les chimistes qui s’investissent dans le suivi de la pollution aquatique (7) en France et en Europe. Sous l’égide de l’ONEMA (Office national de l’eau et des milieux aquatiques), le programme et la fédération AQUAREFF coordonnent la recherche des laboratoires du BRGM de l’INERIS, du CNRS et de l’IFREMER pour développer les méthodes physicochimiques et biochimiques d’élimination des micropolluants organiques (8).

Quelques jours plus tard, sur la même chaine en parlant de la meilleure santé de nos exportations en 2015 on célèbre la performance du champagne et du cognac, en passant sous silence la chimie qui a un bilan commercial bien plus flatteur, second après l’aéronautique. Sans doute que le « politiquement correct », la quête d’audience à 20h50 et passer sous silence les efforts d’amélioration de la qualité et de la surveillance de nos eaux priment sur l’indécence de parler des quelques nanogrammes dans l’eau des Français alors que 600 millions d’êtres humains n’ont même pas accès à l’eau.

Pr Jean-Claude Bernier
février 2016

Quelques ressources pour en savoir plus :
1) Ingénieur de recherche H/F (fiche métier)
2) Agent de laboratoire / Aide-chimiste (fiche métier)
3) La chimie en agriculture : les tensions et les défis pour l’agronomie
4) Quels sont les polluants de l’eau ?
5) Micropolluants chimiques dans l’environnement
6) Biochimie naturelle et traitement de l’eau : de la chimie des écosystèmes et des cocktails…
7) Les micropolluants dans les écosystèmes aquatiques : enjeux de la directive eau
8) L’eau, sa purification et les micropolluants
 

- Éditorial
mediachimie

Les franciliens ont bien de la chance

Au moment où l’on parle abondamment d’emplois, de formation, d’orientation, les collégiens, les lycéens, les étudiants d’île-de France et leurs parents vont pouvoir se rendre au : Village de la chimie, des sciences de la
...

Au moment où l’on parle abondamment d’emplois, de formation, d’orientation, les collégiens, les lycéens, les étudiants d’île-de France et leurs parents vont pouvoir se rendre au :

Village de la chimie, des sciences de la nature et de la vie
Les 12 et 13 février – Parc Floral de Paris au Bois de Vincennes
http://www.villagedelachimie.org

L’édition 2016 du Village de la Chimie met quatre espaces à disposition des jeunes en recherche d’orientation et qui souhaitent mieux connaître les métiers :

  • Espace des professionnels : plus de 35 entreprises, start–ups et organismes sont présents pour expliquer et illustrer comment sur le terrain se déroulent et se vivent les métiers de la chimie, des sciences de la nature et de la vie.
  • Espace de la formation : les enseignants et responsables des filières de formation de 27 établissements détailleront pour vous les parcours qui conduisent aux métiers de la chimie : CAP, BTS, DUT, licences pro, écoles d’ingénieurs et doctorats, sans oublier les voies de l’apprentissage.
  • Espace des conférences : pendant deux jours vous pourrez entendre parler des innovations en chimie, en biotechnologie, en énergie et, plus intriguant de la chimie en cuisine et de la chimie pour résoudre les énigmes policières.
  • Espace de l’insertion professionnelle : des ingénieurs, des responsables des ressources humaines, des membres de l’UNAFIC et de la SCF sont là pour vous conseiller le meilleur parcours professionnel, pour l’entretien d’embauche, le curriculum vitae.

Venez en famille ou avec vos professeurs à Vincennes. L’industrie chimique emploie 200 000 chimistes et il y a plus de 300 000 autres chimistes dans les autres industries, comme la pharmacie, la métallurgie, les plastiques, l’automobile, l’électronique, les parfums et les cosmétiques,  qui représentent chaque année de nombreuses embauches.

Mediachimie.org sera aussi présent au village pour vous montrer toutes ses ressources en terme de fiches métiers. Agent de laboratoire ou assistant ingénieur en biochimie (Bac+2/3), ingénieur procédé ou de production en pétrochimie (Bac+5), responsable du labo d’analyses à la Police scientifique (Bac+5/8), technico-commercial en pharmaco-chimie (Bac+5)… et quantité d’autres carrières en France et à l’international.

Pour les non franciliens qui ne pourraient venir, le site villagedelachimie.org est à disposition, mais le village s’exporte aussi en province, en Rhône-Alpes, en Normandie et dans le Nord Pas de Calais.

Jean-Claude Bernier
Février 2016
 

Formation
- Éditorial
mediachimie

Orientation

Au moment où les interrogations sur les filières de formation post-bac se multiplient et alors que les choix d’orientation se rapprochent, il est bon de rappeler que les métiers de la chimie évoluent et présentent
...

Au moment où les interrogations sur les filières de formation post-bac se multiplient et alors que les choix d’orientation se rapprochent, il est bon de rappeler que les métiers de la chimie évoluent et présentent toujours d’excellentes capacité d’accueil et de progression de carrière.

La chimie représente environ 160 000 emplois directs, souvent dans les PME, et de l’ordre de 500 000 emplois indirects en métallurgie, électronique, pharmacie, automobile… secteurs où la chimie est très présente. C’est au moins 25 000 postes qui s’ouvrent par an, de l’ingénieur au secrétaire et du responsable de vente au responsable du laboratoire d’analyse.

Rappelons les principales filières :

  • Les écoles nationales de chimie et de génie chimique au nombre de 20, constituant la fédération Gay-Lussac et bien réparties sur le territoire, délivrent en 3 ans le diplôme d’ingénieur. L’admission se fait sur concours, après deux ans de classes préparatoires aux grandes écoles (PC CH, PC PH, PSI, MP). Des classes préparatoires intégrées ont également été créées, pour lesquelles l’admission se fait après le bac. Classes préparatoires aux grandes écoles et classes préparatoires intégrées sont accessibles sur le dispositif APB. Les écoles admettent aussi sur titres ou sur concours les étudiants issus d’un cursus universitaire (Bac+2, Bac + 3 et 4) ainsi que des étudiants issus des filières DUT et BTS. Le diplôme d’ingénieur conduit à plusieurs carrières de cadres intéressantes (1) (2) (3).
     
  • Les universités qui ont des facultés ou instituts de chimie dispensent après le bac en 3 ans les licences et en 5 ans les masters de chimie. Elles sont 35, bien réparties sur le territoire en France. Les études y peuvent être prolongées par le doctorat qui conduit aux métiers de la recherche (4) (5).
     
  • Les Instituts Universitaires de Technologie (IUT) délivrent un DUT (Diplôme universitaire de technologie) après 2 ans d’études après le bac.. 17 IUT en France ont un département de chimie permettant d’obtenir le DUT de Chimie et 12 IUT ont un département de Génie Chimique et Génie des procédés qui conduisent au DUT correspondant. L’admission se fait après le bac sur dossier, via le dispositif APB. Les DUT conduisent à de nombreuses fonctions (6) (7).
     
  • Le brevet de technicien supérieur (BTS) est délivré en France par 38 lycées. Sont concernés les BTS métiers de la chimie et les BTS pilotage de procédés qui sont de création récente, remplacant les BTS chimiste et BTS contrôle industriel et régulation automatique. L’admission dans les classes de STS se fait après le bac via le dispositif APB. Les techniciens supérieurs peuvent occuper plusieurs postes en chimie (8) (9).
     
  • La formation par alternance et par apprentissage. Il existe de nombreuses formations en entreprise. Pour sa part, l’Union des Industries Chimiques (UIC) comptabilise 1500 apprentis ou jeunes en formation dans l’industrie chimique (10) (11). Ces formations post-bac ne sont pas toutes disponibles sur le dispositif APB, il ne faut pas hésiter à contacter les CFA et les établissements.

Jean-Claude Bernier
janvier 2016

Quelques ressources pour en savoir plus :

(1) Ingénieur chimiste Procédés
(2) Ingénieur technico-commercial / Attaché technico-commercial
(3) Ingénieur de recherche / Chercheur
(4) Enseignant-chercheur
(5) Directeur R&D / Directeur scientifique
(6) Assistant ingénieur 597
(7) Technicien / Agent de maîtrise et de maintenance industrielle
(8) Technicien chimiste
(9) Assistant import–export
(10) Agent de laboratoire / Aide-chimiste
(11) Opérateur production

De nombreux autres métiers de la chimie auxquels conduisent ces filières peuvent être consultés sur le site mediachimie.org qui présente toutes les fiches métiers et les videos illustrant l’activité en entreprise, en labo et sur le terrain, des « chimistes ».

 

Sugar cane bagasse
- Éditorial
mediachimie

Le biocarburant 2G bientôt à la pompe

On se rappelle que pour les ajouts dans l’essence (SP95-E10) la production d’alcool à partir du sucre de la betterave ou de l’amidon du blé avait essuyé des critiques (1). En effet, non seulement l’efficacité énergétique
...

On se rappelle que pour les ajouts dans l’essence (SP95-E10) la production d’alcool à partir du sucre de la betterave ou de l’amidon du blé avait essuyé des critiques (1). En effet, non seulement l’efficacité énergétique et le bilan CO2 n’étaient pas au rendez-vous, mais cette production était en concurrence avec les cultures vivrières et accusée de faire augmenter le prix des céréales.

C’est pourquoi des recherches intensives se sont développées pour obtenir l’éthanol (2) à partir de la biomasse « lignocellulosique » (3) : la paille, le bois les bagasses des végétaux. À côté de la voie thermochimique coûteuse en énergie, débouche la voie biochimique (4). Il fallait trouver les enzymes et bactéries capables d’extraire les sucres de la cellulose (5), et par fermentation obtenir l’alcool. Plusieurs groupes aux États-Unis, en Europe, en France font la course pour trouver le bon procédé industriel (6). Le challenge est d’améliorer par génie génétique un cocktail d’enzymes dérivés du Trichoderma reesi un champignon qui lors de la guerre du Pacifique Sud en 1944-1945 dévorait les toiles de tentes des Marines américains.

Il faut d’abord séparer la cellulose, l’hémicellulose et la lignine par un procédé mécanique ou chimique. Puis les enzymes à environ 50°C attaquent la cellulose et produisent deux sucres, l’un en C5 le xylose et l’autre en C6 le glucose qui par fermentation vont donner l’éthanol.

Dupont paraît le premier à se lancer au stade industriel (7), la compagnie vient d’inaugurer aux États-Unis la plus grande usine d’éthanol cellulosique dans l’Iowa. Elle produira 115 millions de litres par an à partir de 375 000 t. de tiges et feuilles de maïs ramassées par 500 agriculteurs dans un rayon de 50 km. Le cocktail « Accelerase® 1500 » transforme 80% de la biomasse en 80 heures et la fermentation pour obtenir des solutions à 30 % d’alcool exige le même temps.

En France, le projet « Futurol » lancé en 2008 avec 11 partenaires dont l’INRA et l’IFPEN est aussi arrivé à un « cocktail enzymatique » de première force et un procédé couverts par plus de 20 brevets. Une usine pilote près de Reims fournit déjà 180 000 litres et préfigure une unité industrielle de 180 millions de litres par an d’ici 2018 (8). La société de biotechnologie Deinove avec une souche enzymatique Deinol vient de réussir une étape préindustrielle en Finlande et s’attache à trouver une solution de production compétitive d’ici 2018 (8).

Le bioethanol 2G de source lignocellulosique (9) doit encore démontrer sa rentabilité économique face au prix très bas du baril de pétrole, mais avec le 3G (10) c’est vraiment à long terme l’avenir pour l’environnement.

Jean-Claude Bernier
décembre 2015

Quelques ressources pour en savoir plus :

(1) Des biocarburants pas si verts que ça
(2) L’éthanol (Produit du jour de la Société Chimique de France)
(3) Le végétal, un relais pour le pétrole ?
(4) Valorisation biologique des agro-ressources
(5) La cellulose (Produit du jour de la Société Chimique de France)
(6) Les enjeux de la R&D en chimie pour le développement des carburants et des biocarburants
(7) La chimie au cœur des énergies d’avenir
(8) Chimie du végétal, fer de lance de la chimie durable
(9) Biomasse : la matière première renouvelable de l’avenir
(10) Les algocarburants, de nouveaux diesels miracles ?

Symbole CLP SGH07 (Classification, Labelling and Packaging) J'altère la santé
- Éditorial
mediachimie

Qu’est-ce qu’une attaque chimique ?

Après les attentats abominables qui ont entaché le 13 novembre dernier et révulsé tous les Français, nous avons entendu les hautes autorités de l’État nous mettre en garde sur l’éventualité d’une guerre chimique.
...

Après les attentats abominables qui ont entaché le 13 novembre dernier et révulsé tous les Français, nous avons entendu les hautes autorités de l’État nous mettre en garde sur l’éventualité d’une guerre chimique. Qu’est-ce que cela signifie ? C’est la dispersion dans des endroits clos de gaz toxiques susceptibles d’altérer gravement la santé des personnes présentes et même de les empoisonner mortellement.

Quels sont ces gaz chimiques ? La célébration du centenaire de la grande guerre (1) a jeté quelques lumières sur ces gaz dont on rappelle la première attaque en avril 1915 par le chlore (2).

Au cours du conflit 1914-1918, les gaz utilisés ont été de plusieurs types :

  • les suffocants tels le chlore (Cl2) ou le phosgène (COCl2) qui détruisent les alvéoles des voies respiratoires ;
  • les sternutatoires dérivés de l’arsine non mortels mais provoquant éternuements et nausées ;
  • les vésicants très agressifs comme l’ypérite ou gaz moutarde S(CH2CH2Cl)2 qui par contact produisent des brûlures, des aveuglements et attaquent les poumons (3).

Les quantités à mettre en œuvre ou à déverser par de nombreux fûts ou des obus volumineux rendent difficile leur utilisation en pleine ville par des terroristes, sauf par attaque aérienne qui aurait échappé à la sécurité militaire aérienne.

Plus dangereux sont les organophosphorés dérivé de l’isopropanol comme le Tabun ou le Sarin (4) qui à concentration modérée par inhalation entrainent la paralysie respiratoire. C’est ce dernier qui fut utilisé en 1995 dans le métro de Tokyo par des terroristes de la secte Aun Shinrikyo qui a coûté la vie à 12 personnes et intoxiqué momentanément plusieurs milliers d’usagers. L’antidote principal est l’atropine par voie intraveineuse. C’est probablement la menace la plus dangereuse avec ces gaz innervants comme le VX, encore plus mortel. Cependant, leur synthèse reste assez complexe et dangereuse, difficile à réaliser sans équipements spécialisés et des chimistes professionnels. Par ailleurs, les méthodes nanotechnologiques (5) de détection de traces de ces dérivés (6) et d’explosifs sont de plus en plus perfectionnées (7) et à la disposition de la police scientifique (8).

Jean-Claude Bernier
novembre 2015

Quelques ressources pour en savoir plus :

(1) 1914-1918 : la guerre chimique
(2) Berthollet, le pharmacien Curaudau et l’identification du chlore
(3) Il y a cent ans : la guerre chimique
(4) De la difficulté d’éliminer les « armes chimiques » de Syrie
(5) Les nouvelles techniques d’investigation des explosifs
(6) La chimie au service de la sécurité de nos concitoyens
(7) Déjouer le terrorisme chimique : l’apport des nanotechnologies et des détecteurs de gaz toxiques
(8) La police scientifique