Page précédente
Mots-clés : iode, diiode, eau Javel, acide hypochloreux, HClO, ion hypochlorite, Buneau-Varilla

L’eau acheminée aux soldats du front était le lieu de prolifération de nombreux micro-organismes pathogènes sources de dysenteries et de la typhoïde. Et après les premières attaques aux gaz, l’état-major interdit formellement de boire l’eau qui se trouve sur le front car les gaz empoisonnent les eaux stagnantes.

Comment éliminer les micro-organismes pathogènes présents dans l’eau ?

Les méthodes ont évolué vers plus d’efficacité tout au long du conflit et diffèrent selon que l’on dispose d’eau en containers ou d’eau apportée directement et continûment par canalisation.

Pour l’eau fournie en containers le traitement se fait à l’iode avec 3 comprimés : 1 bleu, 1 blanc et 1 rouge. Patriote jusque dans le traitement de l’eau !

C’est en juillet 1902 que le pharmacien Auguste Georges et le médecin Villard [1] [2] décrivent une méthode d’épuration des eaux de boisson dans la revue de médecine et de pharmacie militaire. Les soldats disposent de 3  comprimés (i) :

  • Un comprimé bleu contenait de l’iodure et de l’iodate de potassium ainsi que du bleu de méthylène
  • Un comprimé blanc contenait du thiosulfate de sodium (ancien nom « hyposulfite de soude »)
  • Un comprimé rouge contenait de l’acide tannique


 
Comprimés tricolores (Musée du Service de Santé des Armées au Val-de-Grâce) source [2] ;
Tonnelet eau, Comprimés blancs et mode d'emploi (Photos F. Brénon au musée du Service de Santé des Armées au Val-de-Grâce)

Le mode d’emploi était le suivant : « Dissoudre 1 comprimé rouge avec 1 comprimé bleu dans ½ verre d’eau. Verser le liquide obtenu dans 10 L d’eau à traiter. Agiter. Attendre 10 min. Dissoudre 1 comprimé blanc dans un ½ verre d’eau. Verser cette solution dans les 10 L d’eau traités ».

Le comprimé bleu et le rouge dans l’eau engendraient du diiode, bactéricide et virulicide. Après avoir laissé agir, le comprimé blanc éliminait l’excès de diiode.

Plus en détail, les réactions mises en jeu et l’épuration étaient basées sur le principe suivant : le mélange d’iodure (I-) et d’iodate (IO3-) en présence d’acide (ici l’acide tannique) conduit à former du diiode (I2) dans le 1er récipient, selon la réaction :

IO3- + 5 I- + 6 H+ → 3 I2 + 3 H2O

Les proportions permettent de former une grande quantité de diiode.

L’agitation et le temps d’attente ont pour objet de faire réagir le diiode sur les microorganismes à éliminer.
Une fois l’action « d’épuration » par le diiode terminée, il faut éliminer l’excès de diiode restant. C’est le rôle du comprimé blanc qui permet de réaliser la réaction :

I2 + 2 S2O32- → S4O62- + 2 I-

Cette eau avait toutefois un gout iodé peu agréable.

Notons que le bleu de méthylène est à la fois un colorant et un bactéricide, l’acide tannique est un polyphénol de formule brute C76H52O46 et a aussi des propriétés astringentes et anti-diarrhéiques.

Traitement par les ions hypochlorite

Les ions hypochlorite ClO- sont disponibles :

  • soit sous forme de comprimés d’hypochlorite de calcium [Ca(ClO)2], stables et faciles d’emploi pour des usages ponctuels
  • soit présents dans l’eau de Javel, solution aqueuse basique de chlorure et d’hypochlorite de sodium, moins stable et plus délicate à utiliser.

L’eau de Javel tire son nom du village de Javel à l’ouest de Paris où elle a été fabriquée de 1784 à 1889. Elle a été utilisée d’abord pour ses propriétés de blanchiment du linge découvertes par Claude-Louis Berthollet (1748-1822) et puis pour ses propriétés désinfectantes en solution diluée étudiées tout particulièrement par Antoine-Germain Labarraque (1777-1850). L’eau de Javel est efficace pour lutter contre la propagation des maladies telles que la typhoïde et le choléra propagées par de l’eau contaminée.

On a montré depuis que l’eau de Javel est à la fois bactéricide et virulicide, propriétés dues aux ions hypochlorite et l’acide hypochloreux [3] [4].

À partir de 1915 le médecin Vincent et le pharmacien C. Gaillard [2] mettent au point une formule de comprimés d’hypochlorite de calcium et de sodium pour purifier l’eau de boisson.

En 1916, le service de santé décide de la javellisation de l’eau, traitement antimicrobien utilisant de l’eau de Javel. Deux méthodes sont possibles :

  • LA JAVELLISATION : la quantité d’eau de Javel à ajouter est fonction de la contamination. Les doses sont de 1 à 5 mg de chlore actif (ii) par litre. Si l’eau était alors dépourvue de microorganismes pathogènes, son goût fort en chlore la rendait très désagréable à boire.
  • LA VERDUNISATION [3] [4] [5] : le terme « verdunisation » provient de la Première Guerre mondiale au cours de laquelle cette technique a été utilisée à grande échelle pour désinfecter l’eau consommée par les « Poilus » de Verdun.

En effet, lors de la bataille de Verdun, l'Armée française, encerclée, ne disposait plus d'eau potable. Le commandant du Génie Philippe Buneau-Varilla (iii), en 1916 à Verdun, réussit à capter et à acheminer l'eau de la Meuse au moyen de puits, de pompes et de tuyaux jusqu’aux tranchées. Il mit au point un procédé automatique de potabilisation de cette eau en faisant injecter de l’eau de javel diluée juste à l'entrée des pompes centrifuges. Ce procédé préconise des doses d’eau de Javel de dix à cinquante fois plus faibles que la javellisation (de l’ordre de 0,1 mg de chlore actif par litre). Cette eau avait un bien meilleur goût que celle ayant subi une javellisation.

La différence dans l’efficacité vient du protocole : dans ce procédé, l’addition de l’eau de Javel est réalisée lentement avec un brassage vigoureux et prolongé. Ces conditions favorisent la dissolution du dioxyde de carbone contenu dans l’air, ce qui abaisse le pH et favorise le passage de l’ion hypochlorite à la forme acide hypochloreux, HClO, qui est plus bactéricide (iv) [3].

 

Notes

(i) La composition des comprimés et le mode d’emploi sont indiqués sur les étiquettes des flacons présentées au musée du Service de santé des armées du Val de Grâce (Paris). Les réactions chimiques proposées par F. Brénon en découlent.

(ii) Que signifie l’expression eau de Javel ou chlorure de chaux « à Y grammes en chlore actif » ?  L’eau de Javel comme le chlorure de chaux contiennent des ions chlorure, Cl-, et hypochlorite, ClO-, en mélange équimolaire. L’ajout d’un acide fait passer ClO- à l’état d’acide hypochloreux HClO. Et si le milieu devient très acide la réaction de HClO sur les ions Cl- provoque un dégagement de dichlore Cl2 selon la réaction :

HClO + H+ + Cl-→ Cl2 + H2O

 

(iii) Philippe Buneau-Varilla (1859–1940) était ingénieur polytechnicien. Le procédé de verdunisation qu’il a mis au point en 1916 a été utilisé par la suite dans une cinquantaine d’établissements publics industriels ou miniers et dans plus d’une centaine de villes.

(iv) Ph. Buneau-Varilla a également proposé une action des UV dans la purification de l’eau [6].

 

Bibliographie
[1] L’épuration de l’eau potable en campagne - Archives de médecine et de pharmacie militaire (juillet 1902) p. 30 à 33 – BnF Gallica

[2] Histoire des comprimés pharmaceutiques en France, des origines au début du XXème siècle, André Frogerais (2013) p. 17 à 20. HAL : hal-00787009v4

[3] L'eau de Javel : sa chimie et son action biochimique, G. Durliat, J.L. Vignes et J.N. Joffin, BUP n° 792 (1997) p. 451 à 469 et tout particulièrement page 464 où est expliqué le rôle du pH et le pouvoir bactéricide de l’acide hypochloreux.

[4] Site internet de la FAO sur les rôles des composés chlorés et iodés : L’hygiène dans l’industrie agroalimentaire . Dans cette ressource il faut toutefois corriger la réaction.
L'hypochlorite de sodium s'obtient suivant la réaction théorique suivante :
2 NaOH + 2 Cl → NaOCl + NaCl + H2O
par 2 NaOH + Cl2 →NaOCl + NaCl + H2O

[5] Ph. Bunau-Varilla, Guide pratique et théorique de la Verdunisation, Paris, J-B. Baillière (1930)

[6] Quelques documents sur la verdunisation des eaux , Ph. Buneau-Varilla, p. 40. BnF Gallica

[7] Bunau-Varilla et-la-verdunisation, article de La dépêche (1926)

 

Crédits illustrations
- Comprimés tricolores (Musée du Service de Santé des Armées au Val-de-Grâce) source [2] ;

- Tonnelet eau, Comprimés blancs et mode d'emploi (Photos F. Brénon au musée du Service de Santé des Armées au Val-de-Grâce)
- Couverture du livre
Quelques documents sur la verdunisation des eaux, Ph. Buneau-Varilla, bibliothèque Exército Portugal

Auteur(s) : Françoise Brénon
Page précédente
Mots-clés : Kipp (1808-1864), gazomètre, sulfures

Petrus Jacobus Kipp (1808-1864) était né à Utrecht où il avait étudié la pharmacie. En 1830 il s’était installé à Delft comme pharmacien et marchand de produits chimiques et d’instruments de laboratoire. Le commerce d’appareils de laboratoire était ancien à Delft, celui des frères Bayens occupait 14 ouvriers vers 1820. En 1850 Kipp proposait un catalogue de 734 articles.

Il avait inventé un appareil en verre pour produire de petites quantités de gaz avec la possibilité d’interrompre la production à son gré. On l’utilisait dans les établissements d’enseignement du 20e siècle pendant les séances de manipulation que nous appelions familièrement « pêche aux ions ». Il s’agissait de reconnaître la nature des cations dans une solution aqueuse saline. L’appareil est composé de deux parties : une base de deux sphères superposées communicantes munies chacune d’un orifice latéral, et une ampoule qui pénètre dans les deux sphères en s’introduisant par le haut. Dans l’orifice latéral de la partie basse de l’appareil on introduisait du sulfure de fer (pyrite) et on rebouchait l’orifice, l’ampoule contenait une solution d’acide (chlorhydrique ou sulfurique) qui pouvait s’écouler sur la pyrite. Leur réaction produisait du sulfure d’hydrogène gazeux qui se répandait dans la partie sphérique et qui pouvait s’échapper par l’orifice latéral ouvert de la sphère supérieure. Celui-ci était muni d’un tube à dégagement qu’on fermait ou ouvrait à volonté. Par ce tube on envoyait le gaz barbotter dans la solution à analyser.

Quand la solution ne contenait qu’un sel dessous, et si l’addition d’acide chlorhydrique ne donnait pas de précipité, [signalant la présence de plomb, argent, ou mercure (I)], on faisait barboter H2S dans la solution légèrement acidifiée et chauffée vers 70 °C. H2S précipitait certains cations sous forme de sulfures. On filtrait, on lavait le précipité et on en mettait un peu dans un tube avec une solution de sulfure d’ammonium. S’il se solubilisait on identifiait le cation présent dans la liqueur primitive par la couleur de son sulfure, rouge orange pour l’antimoine, jaune serin (et soluble dans l’ammoniaque) pour l’arsenic, jaune sale (et insoluble dans l’ammoniaque) pour l’étain (IV), chocolat pour l’étain (II), brun noir pour l’or. Si le précipité de sulfure était insoluble dans la solution de sulfure d’ammonium et s’il était jaune et soluble dans l’acide nitrique, c’était du cadmium. S’il était noir, ce pouvait être du cuivre, du bismuth ou du mercure (II). La couleur du précipité donné par la liqueur primitive additionnée de potasse permettait de distinguer le cuivre (bleue), du bismuth (blanc), et du mercure (II) (jaune).

À cause de l’odeur nauséabonde et de la toxicité de l’hydrogène sulfuré, l’appareil était maintenu sous la hotte.

L’appareil de Kipp est une page de l’instrumentation pour la chimie minérale. On procède aujourd’hui avec une sensibilité incomparablement meilleure par des méthodes physiques quantitative (spectroscopie d’absorption atomique) pour analyser des produits minéraux.

Dans un autre usage le dispositif permet de fabriquer des gaz : le dispositif pouvait servir à produire du dioxyde de carbone en utilisant du marbre au lieu de pyrite, et du dihydrogène en utilisant du fer.


Orgue de pharmacien chimiste

 

Pour en savoir plus

 

Crédits illustrations :
- Appareil de Kipp. MNHN, photo : B. Bodo ; planche Encyclopédie Chimique, E. Fremy (1882)
- Orgue de pharmacien-chimiste, WIkimedia Commons, licence CC0

Auteur(s) : Josette Fournier
Page précédente
Mots-clés : cocaïne, poison végétal, stupéfiant, overdose

Agatha Christie, née à Torquay en Angleterre le 15 septembre 1890, a obtenu un diplôme en pharmacie le 30 avril 1917 après avoir servi comme assistante chimiste dans un hôpital militaire pendant la Première Guerre mondiale. C’est pourquoi dans de nombreux romans policiers, elle utilise des poisons végétaux qui entraînent la mort. Les produits pris à faible dose servent souvent à soulager le malade et sont considérés comme des médicaments mais si la dose est supérieure, le produit peut devenir mortel. Ces produits proviennent de plantes qui, elles aussi, sont dangereuses dans les jardins.

Dans le roman La maison du péril, certains protagonistes consomment de la cocaïne. La cocaïne est obtenue à partir de l’Erythroxylum coca. C’est un arbrisseau qui pousse dans diverses régions d’Amérique du Sud, en Indonésie et dans l’Est africain. La formule chimique de la cocaïne est C17H21NO4 et sa formule développée est la suivante :

Elle est classifiée comme stupéfiant par la Convention unique sur les stupéfiants de 1961 de l'ONU. Elle est illégale dans presque tous les pays, dépénalisée en République tchèque et au Portugal. La feuille de coca est utilisée depuis très longtemps par les indigènes des plateaux andins. La feuille de coca est mâchée ou prise en infusion pour les aider à résister à la fatigue et à l'altitude. Sous cette forme, la coca a un léger effet stimulant, comparable à celui de la caféine. Une feuille de coca contient 0,5% de cocaïne. Dès 1870, on voit apparaître la consommation populaire de vin dans lequel sont infusées préalablement des feuilles de coca. En 1871, le marché est dominé par une marque restée célèbre : le « vin Mariani », boisson tonique française du nom de Ange François Mariani dit Angelo Mariani (1838-1914), préparateur en pharmacie qui a fait macérer des feuilles de coca dans du vin de Bordeaux et a eu l'idée de commercialiser ce vin.

Quant au Coca-Cola, il est créé en 1886 par un pharmacien John Pemberton (1831-1888) pour une boisson à base de coca. De nos jours il n’y a plus de cocaïne dans le Coca-Cola.

Les décès dus à la cocaïne dépendent de facteurs liés à la santé (hypertension, insuffisance respiratoire, asthme, diabète), à une overdose (dose létale 1,2g) ou à une consommation associée à un mélange d’autres substances (tabac, alcool…).

 


Agatha Christie / Erythroxylum coca

Pour en savoir plus

 

Crédits illustrations :
-
Erythroxylum coca, Plantes médicinales de Köhler, Wikimedia Commons, domain public
- By Agatha Christie plaque -Torre Abbey.jpg: Violetrigaderivative work: F l a n k e r - Agatha Christie plaque -Torre Abbey.jpg, Wikimedia Commons, licence CC BY-SA 3.0

Auteur(s) : Catherine Marchal
Page précédente
Mots-clés : Berta Karlik, William Bragg, Marie Curie, Franz Exner, Stefan Meyer, astate naturel, étalon de radioactivité

Au début du XXe siècle, deux pays ont construit un institut du radium, l’Autriche-Hongrie et la France. Celui de Vienne et celui de Paris ont eu de nombreux contacts. Dans les deux instituts, les femmes ont joué un grand rôle et ont été considérées. Elles ont quelquefois, à un moment donné, travaillé aussi bien à Vienne qu’à Paris.

À Vienne, Berta Karlik, née le 14 janvier 1904, soutient une thèse en physique nucléaire en 1927 sous la direction de Stefan Meyer (1872-1949) et de Hans Thirring (1888-1976). Puis elle enseigne les mathématiques et la physique dans le lycée où elle a fait ses études. Elle bénéficie d’une bourse en 1930 et peut se rendre à Londres afin de se perfectionner en cristallographie auprès de Sir William Bragg (1890-1971). Elle vient aussi à Paris et rencontre Marie Curie (1867-1934). À son retour à Vienne, elle entre à l’Institut du radium en 1931. Les femmes représentent 38% de l’effectif, Berta Karlik y fera toute sa carrière.

Avec Karl Przibram (1878-1973) et le suédois Hans Pettersson (1888-1966), elle travaille sur la synthèse de la fluorescence bleue de la fluorine, la bande bleue de la fluorescence est due à l’europium, élément chimique classé dans la famille des terres rares. Ce travail, comme d’autres sont indiqués, en France, dans la Revue générale des sciences pures et appliquées.

En 1933, elle reçoit avec Elisabeth Rona (1890-1981) le prix Haitinger de l’Académie autrichienne des sciences pour des recherches dans le domaine de la luminescence. Lorsque Pettersson quitte Vienne et retourne à Uppsala pour diriger l’institut océanographique ainsi que la station hydrographique de Bornö située dans le sud de la Suède près du Gullmarfjord, Berta Karlik comme Elisabeth Rona se rendront en Suède afin d’étudier la radioactivité de l’eau de mer et sa teneur maximale en éléments radioactifs.

Le 12 mars 1938, l’Allemagne annexe l’Autriche, les chercheurs juifs sont chassés de l’Institut. Berta Karlik peut continuer ses recherches car elle n’est pas juive.

Berta Karlik et Traude Cless-Bernert (1915-1998) mettent en évidence l’existence de l’astate naturel en 1944 alors qu’Emilio Segrè (1905-1989), Date R. Corson (1914-2012) et K.R. Mac Kenzie l’avaient obtenu, en 1940, au laboratoire en bombardant du bismuth avec des particules alpha (α) accélérées. Cet élément naturel existe en très faible quantité dans la nature, il est radioactif et instable, c’est un des produits de la désintégration de l’uranium, du thorium et du francium, dont un de ses isotopes est utilisé en radiothérapie. Pour cette nouvelle découverte, elle recevra un second prix Haitinger seule cette fois-ci en 1947.

Suite à la découverte de l’astate, elle devient directrice provisoire de l’Institut en 1945 à la place de Stefan Meyer qui est destitué comme juif et en 1947, lorsqu’il prend sa retraite, elle lui succède et conservera le poste jusqu’à sa propre retraite en 1974. À l’université de Vienne, elle est professeur associé en 1950 et en 1956, elle est la première femme professeur titulaire. Elle devient membre correspondant de l’Académie autrichienne des sciences dès 1954 et la première femme membre de cette institution en 1973.

Berta Karlik est nommée à la commission du bureau du chancelier fédéral comme conseiller sur les questions concernant l’énergie nucléaire. Les Nations-Unies organisent deux conférences à Genève du 8 au 20 août 1955 puis du 1er au 13 septembre 1958 sur les applications pacifiques de l’énergie nucléaire et elle est le représentant officiel de l’Autriche. En 1958, le congrès international porte le nom « L’atome pour la paix ».
Berta Karlik participe aussi à la commission pour la mesure des rayonnements ionisants du bureau international des poids et mesures à Sèvres. En 1958, il est décidé de créer un comité consultatif pour les étalons de mesure des radiations ionisantes. Elle est experte auprès du comité consultatif et chargée du groupe de travail qui doit faire des propositions sur l’étalon de radioactivité. C’est l’étalon international conservé à l’Institut du radium à Paris qui sera déplacé vers le bureau international des poids et mesures.

En 1974 elle prend sa retraite mais continue à travailler à l’institut. Elle meurt le 4 février 1990.

Retracer les recherches et la vie de Berta Karlik permet de décrire les premiers temps de la radioactivité et le rôle que les femmes y ont joué.

 

Monument à la physicienne Berta Karlik (1904-1990) dans la cour de l'Université de Vienne (artiste : Thomas Baumann).
Source : Sandra Folie, travail personnel, Wikimedia Commons, licence CC BY-SA 4.0

 

Pour en savoir plus

Auteur(s) : Catherine Marchal

Mediachimie | Participer ou performer ?

Date de publication : Mercredi 17 Juillet 2024
Rubrique(s) : Éditorial

Le terme « perform + ance » a pour signification « ce qui est accompli, une chose effectuée ». Que ce soit pour les arts, le théâtre, dans le sport ou dans notre vie quotidienne, cette notion est de plus en plus présente.

Si lors des Jeux Antiques, les athlètes devaient juste être les plus forts, les premiers sur la ligne d’arrivée, de nos jours s’ajoute à ce concept d’être le/la meilleur(e), celui de la performance sportive. Il faut non seulement monter sur un podium mais en plus, battre un record (le sien ou celui existant au niveau européen ou mondial), bref performer dans des contextes parfois complexes (conditions météo, acoustiques, concurrence accrue, minima, sélections…).

Les athlètes, valides ou porteurs de handicap, sont obnubilés par ce concept. Les fédérations sportives et les coachs ne le sont pas moins. C’est pourquoi, chacun sollicite chercheurs, industriels dont de nombreux chimistes… la science en général pour imaginer des process, des équipements, des matériaux, des produits « licites » permettant d’accroître leurs performances. D’ailleurs, le lieu sacré en France d’entrainements des athlètes et para-athlètes de haut niveau ne s’appelle-t-il pas l’INSEP (Institut national du sport, de l’expertise et de la performance) et la devise olympique n’est-elle pas « Plus haut, plus vite, plus fort ensemble » ?

Aller plus vite, optimiser sa pénétration dans l’air, personnaliser la charge de travail en fonction de la morphologie, pouvoir bénéficier de textiles compatibles avec des efforts longs ou dans des conditions extrêmes… pour tous ces objectifs, la science apporte son savoir-faire, ses batteries de données qui permettent d’apporter des solutions individuelles ou plus globales pour cette quête de performance.

À l’approche des Jeux Olympiques et Paralympiques de Paris 2024, ce terme sera sur toutes les lèvres, dans tous les esprits. Les scientifiques ont travaillé dur pour réfléchir à des textiles, des matériaux plus souples, plus légers et résistants, apporter données et savoirs pour que les sportives et sportifs se sentent prêts et compétitifs pour performer !

Jean Gomez

Pour en savoir plus
Colloque Chimie et Sports, Fondation de la maison de la Chimie, février 2024
Chimie dans le sport - Sports et matériaux, É. Bausson, dossier Nathan / Fondation de la Maison de la Chimie (Mediachimie.org)
Quels matériaux pour les prothèses des para-sportifs ?, A. Harari, Question du mois (Mediachimie.org)
Des textiles pour sportifs, apport de la chimie pour améliorer confort et performances, F. Roland, La chimie et le sport (EDP Sciences, 2011) isbn : 978-2-7598-0596-9, p. 239

 

Crédit illustration : Flickr, domaine public
 

Page précédente

 

Pour aller plus loin avec la question 3

Le glyphosate est une substance désherbante à large spectre d’action utilisée en zones agricoles, forestières et non agricoles : désherbage des vignes et des vergers, élimination des végétaux ou des intercultures avant de semer les cultures annuelles type céréale, désherbage des voies ferrées et des sites industriels… Il est absorbé par les feuilles après pulvérisation et agit en perturbant la croissance des plantes par inhibition d’une enzyme essentielle à la biosynthèse d’acides aminés aromatiques dans les plantes.

Pour aller plus loin avec la question 5

L’utilisation des produits à base de glyphosate suscite des inquiétudes diverses :

  • Impact sur la santé humaine : de nombreuses études ont soulevé des interrogations sur les éventuels effets cancérigènes et perturbations endocrines du glyphosate et de son métabolite l’acide aminométhylphosphonique (AMPA, il peut avoir d’autres origines car il est contenu en grande quantité dans les détergents, les agents contre la corrosion et la formation du tartre) mais aussi du tensioactif (POEA).
  • Résistance des mauvaises herbes : l’utilisation répétée des produits à base de glyphosate a conduit à l’apparition de plantes résistantes, ce qui rend son efficacité limitée et nécessite l’emploi de quantités de plus en plus importantes.
  • Impact sur la biodiversité : l’élimination de « mauvaises herbes » peut réduire l’habitat de nombreuses espèces végétales et animales.
  • Contamination de l’eau et des sols : les molécules telles que le glyphosate, ses produits de dégradation ou le tensioactif peuvent migrer dans les sols et les eaux, pouvant ainsi les contaminer. Cela soulève des inquiétudes sur la qualité de l’eau et de la vie aquatique.
Mots-clés : glyphosate, herbicide, Roundup, POEA

Mediachimie | Les nouveaux vélos pour les champions et pour nous

Date de publication : Vendredi 05 Juillet 2024
Rubrique(s) : Éditorial

Les vélos du Tour de France

Avec le Tour de France 2024 parti d’Italie fin juin et deux Français vainqueurs des deux premières étapes l’audience télévision explose en Europe. Ce sont des centaines de milliers de spectateurs sur les routes et des millions de téléspectateurs sur leurs canapés qui suivront les coureurs sur leurs petites merveilles de technologie que sont devenus les vélos de course.

Loin des vélos en acier des années 1913 réparables dans une forge par Eugène Christophe, la demande de légèreté des machines a exigé d’abord des épaisseurs de tubes du cadre de plus en plus faibles, puis le remplacement de l’acier par l’aluminium et plus récemment l’usage des composites carbone qui apportent le faible poids et une rigidité améliorée (1). Tous les vélos des équipes du Tour de France ont maintenant non seulement des cadres moulés en fibre de carbone + polyester mais aussi des roues en carbone pour que le poids avec les accessoires soit de l’ordre de 7 kg (2).

Parlons d’ailleurs des accessoires. Pour transmettre l’effort, le moyeu du pédalier est muni d’un capteur d’effort qui traduit au coureur la puissance qu’il dépense, en watt. Depuis quelques années les roulements « en céramique » (3) disposent de billes en alumine dans les couronnes d’acier, très dures sur des surfaces de contact réduites et améliorent ainsi de plus de 80% le glissement et la fluidité des pièces en mouvement. Il en est de même pour le dérailleur électromagnétique qui peut être commandé par un « shifter », un petit bouton sur le guidon qui par bluetooth commande les changements de vitesse. Enfin, depuis longtemps, les bons vieux freins à patins ont été abandonnés. Ce sont des freins à disques sur les moyeux des roues à commande, soit hydraulique, soit électrique. Par ailleurs sur les roues en carbone les boyaux et chambres à air ont laissé place aux tubeless qui contiennent un solvant avec un polymère qui, en cas de crevaison limitée, comble le trou et permet au coureur de rouler encore un peu (4). Chaque vélo est adapté à la taille du coureur et à sa recherche d’aérodynamique, pour cela la tige du guidon est abaissée et même la tige de selle est creusée à l’arrière d’une cavité qui diminue la trainée arrière. Toutes ces améliorations technologiques n’ont qu’un seul but, améliorer le rendement énergétique , donc faire économiser quelques « wattheures » au coureur et diminuer son rythme cardiaque. Bien sûr la Fédération internationale a veillé à ce que ces progrès technologiques ne rompent pas l’égalité des chances et elle a limité le poids minimum des machines à 6,8 kg. Ne vous y trompez pas le coût de ces superbes vélos n’est pas à la portée du tout-venant, il est compris entre 12 000 et 20 000 €. Quand on sait qu’il y a entre 1000 et 2000 vélos qui se baladent dans la caravane du Tour voilà une caravane en or !

Le vélo de tout le monde

J’espère que vous avez payé moins pour votre vélo. En Europe la mode et le souci de préserver notre environnement continuent à soutenir le marché du vélo. Il s’en est vendu environ 25 millions en 2023 dont à peu près 20% avec assistance électrique (VAE). En France, le marché représente un CA de 3,5 Mrd € avec 2,23 millions de machines vendues à un prix moyen de 980 € dont 700 000 VAE au prix moyen de 1 900 €.

Alors avez-vous bien contribué à la préservation de notre chère planète ? Si vous avez un VAE l’empreinte carbone en France est de l’ordre de 17 g (CO2e)(i)/km parcouru si vous gardez votre engin 15000 km. C’est légèrement plus que pour un vélo ordinaire mu par la force musculaire qui est de 11 à 13 g CO2e/km parcouru. Ces chiffres sont très bons comparés au TGV 35 g CO2e/km parcouru par passager, 70 g CO2e/km pour une voiture électrique et plus de 100 g CO2e/km pour une voiture thermique. Seule la marche à pied (1 à 2 g CO2e/km) et le métro (8 à 10 g CO2e/km) sont plus performants que le vélo. L’essentiel de cette empreinte carbone est dû à la fabrication. Prenons un vélo de 20 kg en aluminium : la production du cadre en Chine exige 181 kg CO2e ; s’il est à assistance électrique il faut ajouter 20 kg CO2e pour la batterie et 37 kg CO2e pour le moteur. Comment réduire son empreinte carbone ? il est clair que s’il était fabriqué en France, avec de l'aluminium de recyclage ou de refusion, de 181 kg CO2e on passerait à peine à 20 kg CO2e (compte tenu de l'énorme différence d'énergie entre l'aluminium primaire et celui de seconde fusion et des mix électriques Français et Chinois comparés). Et encore moins si par « retrofit » (ii) on transformerait votre bon vieux vélo en VAE.

Bien, me diriez-vous : « mais je consomme de l’électricité ! ». Les batteries des voitures électriques (5) ont mauvaise réputation à cause de leurs poids, mais sur le VAE la batterie est bien plus petite et d’une capacité souvent inférieure à 1 kWh. Par exemple, pour faire 100 km un VAE demande environ 1 kWh ce qui représente en France 0,5 g CO2e/km parcouru soit moins de 4% des émissions totales, et en Allemagne 4 g CO2e/km un peu plus à cause du mix électrique.

Si vous êtes passionnés de cyclisme et d’environnement on peut encore améliorer l’empreinte carbone du VAE avec d’autres matériaux comme un cadre en bois ou en fibres de carbone recyclées ou en aluminium vert (6) avec des batteries au sodium (7) plutôt qu’au lithium, etc.

La forme physique

En cette année olympique n’oubliez pas que tous les jours faire du vélo vous fait perdre des calories par km parcouru et entretient votre moteur personnel : le cœur. Grâce aux hormones fabriquées par le cerveau au cours de l’effort, comme l’endorphine, vous vous sentirez mieux (8).

On a parfois accusé nos champions qui montraient une débauche de « watts » lors d’ascensions en montagne, d’avoir dissimulé dans le cadre de leur vélo de course un micromoteur et une micro-batterie électrique : les contrôles par infrarouge en course et par rayons X au garage ont montré que c’était faux. Par contre le dopage chimique par détournements de médicaments reste toujours possible, mais la chimie analytique fait continuellement des progrès et les risques de se voir rattraper par la patrouille toujours plus probables.

Pour vous en pédalant au fil des kilomètres, dopez-vous de grand air pur et de paysages apaisants, alors vous réussirez vos vacances.

Jean-Claude Bernier
Juillet 2024

 

(i) (CO2e) pour CO2 équivalent, unité créée par le GIEC pour mesurer et comparer les effets climatiques d’un gaz à effet de serre, sachant que les différents gaz n’ont pas le même impact sur l’effet de serre et ont une durée de vie dans l’atmosphère différente.
(ii) rénovation
 


Pour en savoir plus
(1) Les matériaux dans le sport, (r)évolutionnaires !, P. Bray, O. Garreau et J.-C. Bernier, fiche Chimie et... en fiches cycle 4 (Mediachimie.org)
(2) Les matériaux de la performance C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, La chimie dans le sport, collection Chimie et... Junior (EDP Sciences, 2014)
(3) Les céramiques et les réfractaires, indispensables à l’industrie primaire, J. Poirier, Colloque Chimie et matériaux stratégiques, novembre 2022
(4) Comment fabriquer des pneus à partir d’un arbre ? La vulcanisation,  J.-C. Bernier, série Réaction en un clin d'œil (Mediachimie.org)
(5) Le lithium un élément chimique indispensable pour notre mobilité actuelle, É. Bausson, fiche Chimie et... en fiches cycle 4 (Mediachimie.org)
(6) Comment verdir les métaux ? J.-C. Bernier et F. Brénon, éditorial (Mediachimie.org)
(7) Les batteries sodium-ion, J.-C. Bernier, éditorial (Mediachimie.org)
(8) Sport et cerveau, C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, La chimie dans le sport, collection Chimie et... Junior (EDP Sciences, 2014)

 

Crédit illustration : Pexels / Pixabay

Remise du GPJJC 2024

Date de publication : Mercredi 03 Juillet 2024
Rubrique(s) : Événements

Jeudi 27 juin, se tenait à la Fondation de la maison de Chimie la finale du grand prix « les jeunes journalistes de la chimie ».

Les 3 binômes sélectionnés ont présenté au jury leurs vidéos et leurs articles traitant les thèmes suivants :

1. Comment les PHAs peuvent permettre à la France d’atteindre l’objectif zéro pollution plastique ?
Sarah Costes et Roméo Marmin – École publique de journalisme de Tours (EPJT)
2. L’utilisation des nouvelles techniques d’imagerie chimiques pour étudier les peintures archéologiques
Caroline Barathon et Cléa Dubray – École de journalisme de Grenoble (EJDG)
3. Décarbonation du ciment, se passer du clinker pour diminuer les émissions de CO2
Morgane Anneix et Juliette Laffont – École de journalisme Sciences Po Paris

Après délibération, le jury composé de journalistes de la presse écrite et télévisée, de scientifiques universitaires et industriels a décerné ce grand prix à Caroline Barathon et Cléa Dubray, qui ont concouru avec le sujet : « L’utilisation des nouvelles techniques d’imagerie chimiques pour étudier les peintures archéologiques ». Le grand prix a été remis par Philippe Goebel, Président de la Fondation de la Chimie.

Chaque étudiant finaliste fait partie désormais de l’AJSPI et tous se sont vu proposer un mentora jusqu’à la fin de leur étude, leur permettant de bénéficier du réseau des experts scientifiques de la Fondation de la Maison de la Chimie.

L’article du binôme lauréat sera publié dans la page Science du Figaro. Les deux autres binômes seront coachés par les journalistes du jury pour améliorer leur article en vue d’une publication éventuelle.

Retrouver l’ensemble des productions du GPJJC2024 dont la vidéo et l’article lauréats 2024 sur Mediachimie :
https://www.mediachimie.org/content/grand-prix-des-jeunes-journalistes-de-la-chimie

Le concours sera reconduit en 2025. Quelques évolutions seront apportées dont notamment le dédoublement du grand prix « les jeunes journalistes de la chimie » en un grand prix qui récompensera le meilleur article produit et un grand prix destiné à la meilleure vidéo proposée par les binômes sectionnées.

 

Binôme lauréat du GPJJC 2024 : Caroline Barathon et Cléa Dubray

 

Jury et finalistes du GPJJC 2024

Page précédente

Biosourcés, biodégradables et compostables, les polyhydroxyalcanoates (PHAs) sont considérés comme une alternative prometteuse aux plastiques traditionnels, particulièrement polluants. Leur coût élevé, les limites de leurs propriétés mécaniques et la concurrence avec d’autres produits recyclés n’en font certes pas un produit miracle, mais ils restent à ce jour une solution intéressante.

Auteur(s) : Sarah Costes et Roméo Marmin (École publique de journalisme de Tours, finalistes du Grand Prix des Jeunes Journalistes de la Chimie 2024)
Source : Grand Prix Jeunes Journalistes de la Chimie 2024
Mots-clés : plastique, PHA, biodégradable, pollution, microplastiques
Page précédente

Ces dernières années, de nouvelles techniques d’imagerie scientifique facilitent l’étude d’oeuvres archéologiques. À l’été 2024, une équipe du Centre national de la recherche scientifique (CNRS) révèle, grâce à ces outils, l’existence de retouches sur des peintures funéraires de la vallée des rois à Louxor. Quels sont ces nouveaux procédés ? Et comment la chimie participe-t-elle à lever les mystères de l’ère pharaonique ?

Auteur(s) : Caroline Barathon et Cléa Dubray (École de journalisme de Grenoble, lauréates du Grand Prix des Jeunes Journalistes de la Chimie 2024)
Source : Grand Prix Jeunes Journalistes de la Chimie 2024
Mots-clés : égyptologie, imagerie chimique, pigments, peinture, rayons X
Précédent • … 13141516171819 • … Suivant