Mediachimie | Des métaux qui guérissent ?

Date de publication : Lundi 29 Juin 2020
Rubrique(s) : Éditorial

On sait que pour être en bonne santé, les oligoéléments jouent un rôle majeur dans notre organisme ce sont des composés du zinc, du fer, du manganèse, du magnésium… En revanche on connait moins les vertus antibactériennes (antivirales ?) des métaux purs. En cette période de pandémie de la covid-19, il n’est pas étonnant qu’un renouveau des recherches sur des applications sanitaires se manifeste et notamment sur l’or, l’argent et le cuivre dans l’ordre décroissant des prix !

L’or (1) par sa couleur jaune a des reflets complexes dus au plasma de surface fluctuant qu’engendrent ses électrons de valence faiblement liés. Les plasmons de surface font actuellement l’objet d’études en particulier pour les nanoparticules (2) sans cependant que ces propriétés de surface fassent l’objet d’applications autres qu’en catalyse. L‘or métal est toutefois utilisé en chrysothérapie et en homéopathie.

L’argent est un métal qui a des propriétés germicide et bactéricide. Dans l’Antiquité (3) on se servait de plaques d’argent pour purifier l’eau. Couverts et plats revêtus d’argent eurent une réelle utilité tant qu’on ne pouvait pas disposer d’eau potable. De là vient l’usage d’offrir en cadeau de baptême aux enfants une timbale en argent. Cette propriété est maintenant redécouverte et utilisée avec les nanoparticules d’argent issues de solutions colloïdales (4). Elles sont utilisées comme germicides dans les textiles sportifs et pour les chaussettes afin d’éliminer les odeurs de transpiration. Dans les dispositifs médicaux, bandages et pansements, ce sont leurs propriétés bactéricides qui sont recherchées, de même dans les emballages alimentaires et les revêtements de parois de réfrigérateur. Avec la pandémie, des tissus imprégnés de particules d’argent et résistant plus de 20 fois au lavage ont été utilisés pour la fabrication de masques de protection.

Le cuivre (5). Parmi les nombreuses études sur le coronavirus, celles des universités de Californie (Los Angeles et Princeton) publiées dans le New England Journal of Medicine ont montré que le coronavirus SARS-CoV-2 (6) peut subsister entre 2 et 3 jours sur du plastique ou de l’acier inoxydable mais disparaît en moins de quatre heures sur le cuivre. Ces observations rejoignent les travaux du professeur Bill Keevil de l’université de Southampton qui depuis plusieurs années étudie la diminution drastique de colonies bactériennes sur le cuivre : Legionella, Escherichia coli par exemple, sont éliminées en quelques heures sur les surfaces, voire quelques minutes sur une poignée de porte en cuivre. Il semblerait d’après l’auteur que les ions Cu(I) et Cu(II) pénètrent dans la cellule des bactéries, y empêchent le transfert d’oxygène et cassent son ADN. Les vertus sanitaires du cuivre sont bien reconnues, ne serait-ce que par l’utilisation massive du cuivre dans nos habitations pour les canalisations et la distribution de l’eau sanitaire. En cette période, les fabricants innovent : une société américaine a sorti un masque en tissu imprégné de cuivre CuTEC antibactérien et le teste contre la Covid-19, une société chilienne a multiplié sa production par 25 en trois semaines avec un masque réutilisable contenant de fins fils de cuivre incrustés dans le tissu. Le Chili, qui est le premier producteur mondial de cuivre, espère profiter de ce marché nouveau. Dans les hôpitaux de ce pays le cuivre est largement utilisé pour les plans de travail, les ustensiles médicaux, les poignées de portes… Un industriel français Lebronze alloys (alloys signifiant alliages en anglais) précise ainsi que ses poignées de portes et ses mains courantes en alliage de cuivre sont aussi une barrière à l’infection, notamment dans les EHPAD.

La lutte contre la pandémie (7) est ainsi devenue métallurgique et variée, des autocollants en cuivre des universitaires américains aux masques à nanoparticules de cuivre (moins chers que l’argent) au Chili jusqu’aux équipements d’hôpitaux. On est loin des bassines en cuivre pour les confitures (8) qui nous paraissent d’un autre temps... Le temps d’avant ?

Jean-Claude Bernier et Catherine Vialle
Juin 2020

Pour en savoir plus
(1) L’or, élément chimique ou magique ?
(2) Nanomatériaux et nanotechnologie : quel nanomonde pour le futur ?
(3) Les métaux au fil de l’histoire (dossier pédagogique) (1266)
(4) Caractérisation des nanoparticules inorganiques dans les produits du quotidien : les méthodes d’analyse et les applications (2548)
(5) Comparaison de quelques alliages de cuivre et de zinc (956)
(6) Le coronavirus, un défi pour la chimie du vivant (2919)
(7) Covid-19 : la chimie médicinale à l’assaut des mécanismes de propagation virale (3032)
(8) Peut-on faire de bonnes confitures sans bassine en cuivre ? (1261)
 

Illustration : casque de cavalerie de Nimègue, masque de fer gainé de bronze et d'argent, seconde moitié du premier siècle, Museum het Valkhof, Nimègue (Pays-Bas)
Following Hadrian/ Flickr - Licence CC by-nc-sa 2.0

Page précédente
Mots-clés : énergie, renouvelable, solaire, éolien, électricité, réseau, ressources, stockage

Il y a consensus, les sources d’énergie fossiles sont épuisables. Or, l’humanité n’est pas prête à se passer d’énergie. Pire, elle en consomme de plus en plus. Pourquoi, dans ce cas, ne mettons-nous pas tout en oeuvre pour développer la production d’énergie renouvelable ? Le Soleil n’est pas près de s’éteindre, le vent soufflera toujours… Les énergies renouvelables comme l’énergie éolienne et l’énergie solaire sont donc inépuisables ! Dans cette fiche, on s’intéresse à la production d’énergie électrique, qui constitue 25 % du mix énergétique français. On constate alors que le mot renouvelable est trompeur et que l’intégration d’électricité verte dans le réseau existant est en fait plus complexe qu’on l’imagine.

Parties des programmes de physique-chimie associées :

  • Programme d’enseignement scientifique de première générale : Thème 2 – Le Soleil, notre source d’énergie
  • Programme d’enseignement scientifique de terminale générale : Thème 1 – Science, climat et société & Thème 2 – Le futur des énergies
  • Programme de physique-chimie et mathématiques de première STI2D : Partie Énergie
  • Programme de physique-chimie et mathématiques de terminale STI2D : Partie Énergie
Auteur(s) : Pierre Labarbe

Les prix La main à la pâte 2020 de l'Académie des sciences

Date de publication : Lundi 22 Juin 2020
Rubrique(s) : Événements

Vous êtes enseignant d'école primaire ou de collège, dans l'enseignement public ou privé, et avez mené cette année un projet en sciences avec votre classe ?
Vous êtes étudiant en Master 2 MEEF ou lauréat du CAFIPEMF ou du CAFFA ?
Valorisez votre travail en participant aux Prix La main à la pâte, de l'Académie des sciences !
Date limite de réception des dossiers : 18 juillet 2020

Chaque année, les Prix La main à la pâte récompensent des classes d'école primaire et de collège ayant mené des projets scientifiques particulièrement démonstratifs d'une pratique active et raisonnée des sciences (prix "Écoles - Collèges").

Pour l'année 2020, deux prix additionnels seront décernés :

  • un prix dans le domaine de la chimie en partenariat avec la Fondation de la Maison de la Chimie.
  • un prix à destination des collégiens récompensant un projet visant à développer l'esprit scientifique et l'esprit critique des élèves.

Les prix distinguent également des mémoires d'étudiants et d'enseignants réalisés dans le cadre de diplômes universitaires (prix "Master Métiers de l’enseignement, de l’éducation et de la formation") ou de certificats académiques (prix "Professeur-Formateur").

Le Prix "Professeur-Formateur" est organisé tous les deux ans. Les lauréats du CAFIPEMF et du CAFFA en 2020 et 2021 concourent pour le prix 2021.


Voir les projets primés de l'année précédente

 

 

Page précédente
Mots-clés : formations, orientation, sport, matériaux

Pour travailler dans un secteur en relation avec le sport avec une formation en chimie.

sources d’orientation et de réflexions / domaines d'activité / exemples de métiers / formations /compétences attendues / informations employeurs et emplois / données du secteur

Les domaines d’activité

  • Recherche & développement
  • Qualité, sécurité, environnement
  • Procédés - Production
  • Analyse laboratoire et contrôle qualité
Auteur(s) : Cristina Da Cruz, Françoise Brénon et Gérard Roussel
Source : Fiche orientation réalisée par les Éditions Nathan en partenariat avec La Fondation de la Maison de la Chimie et Mediachimie
Page précédente
Mots-clés : formations, orientation,cosmétiques, parfums, formulation

Pour travailler dans le secteur de la cosmétique et des parfums avec une formation en chimie.

sources d’orientation et de réflexions / domaines d'activité / exemples de métiers / formations /compétences attendues / informations employeurs et emplois / données du secteur

Les domaines d’activité

  • Recherche & développement
  • Procédés - Production
  • Analyse laboratoire et contrôle qualité
  • Marketing et vente
Auteur(s) : Cristina Da Cruz, Françoise Brénon et Gérard Roussel
Source : Fiche orientation réalisée par les Éditions Nathan en partenariat avec La Fondation de la Maison de la Chimie et Mediachimie
Page précédente
Mots-clés : formations, orientation, énergies renouvelables

Pour travailler dans le secteur des énergies renouvelables avec une formation en chimie.

sources d’orientation et de réflexions / domaines d'activité / exemples de métiers / formations /compétences attendues / informations employeurs et emplois / données du secteur

Les domaines d’activité

  • Recherche et développement
  • Qualité, sécurité, environnement
  • Procédés - Production
  • Analyse laboratoire et contrôle qualité
Auteur(s) : Cristina Da Cruz, Françoise Brénon et Gérard Roussel
Source : Fiche orientation réalisée par les Éditions Nathan en partenariat avec La Fondation de la Maison de la Chimie et Mediachimie
Page précédente
Mots-clés : formations, orientation, police scientifique, forensique

Pour travailler dans le secteur de la police scientifique avec une formation en chimie.

sources d’orientation et de réflexions / domaines d'activité / exemples de métiers / formations /compétences attendues / informations employeurs et emplois / données du secteur

Les domaines d’activité

  • Analyse laboratoire et contrôle qualité
  • Sécurité industrielle
  • Qualité, sécurité, environnement
Auteur(s) : Cristina Da Cruz, Françoise Brénon et Gérard Roussel
Source : Fiche orientation réalisée par les Éditions Nathan en partenariat avec La Fondation de la Maison de la Chimie et Mediachimie
Page précédente
Mots-clés : groupes caractéristiques, explosifs, pentrite, dynamite, nitroglycérine

La fabrication des explosifs est connue depuis la nuit des temps puisque la poudre noire fut découverte en Chine en 220 avant Jésus-Christ. En 690, les arabes ont utilisé la poudre noire au siège de La Mecque. Et c’est au XIIIe siècle qu’elle est arrivée en Europe. La poudre noire est un mélange de salpêtre, c’est-à-dire du nitrate de potassium, ou éventuellement du nitrate de sodium, auquel sont ajoutés 15 % de charbon de bois, qui fournit le carbone, et 10 % de soufre. Cette recette simple a fait merveille pendant de nombreux siècles.

Première générale - Enseignement de spécialité

Objectif : Identifier à partir d’une formule semi-développée, les groupes caractéristiques associés aux familles de composés : alcool, aldéhyde, cétone et acide carboxylique.

Constitution et transformation de la matière
Thème 3 - Propriétés physico-chimiques, synthèses et combustions d’espèces chimiques organiques
Partie A - Structure des entités organiques

Notions et contenus : Formules brutes et semi-développées, squelettes carbonés saturés, groupes caractéristiques et familles fonctionnelles.

Auteur(s) : Cristina Da Cruz
Source : Dossier pédagogique réalisé par les Éditions Nathan en partenariat avec La Fondation de la Maison de la Chimie et Mediachimie

Mediachimie | La formulation des bétons et des ciments

Date de publication : Mardi 16 Juin 2020
Rubrique(s) : Zoom sur...
La structure en dentelles du MUCEM - photo :  J. Rouquerol

Le béton est le matériau de construction le plus utilisé dans le monde (dix milliards de tonnes !) en raison de son faible coût de production (un peu plus de 100 euros/m3). C’est un mélange de sable, de graviers (granulats) et de ciment, ce dernier assurant la cohésion de l’ensemble (liant). La fabrication d’un béton requiert pour sa mise en œuvre une formulation définie qui varie en fonction de la taille du sable et des graviers, voici une formulation typique du béton : granulats (51%), sable (34%), ciment (10%) et eau (5%).

Les mortiers sont des mélanges uniquement de sable, de ciment et d’eau […]

Accédez au Zoom sur la formulation des bétons et les ciments

Page précédente
Mots-clés : béton, ciment, chaux, dioxyde de carbone, pouzzolane, Portland, laitiers

Le béton est le matériau de construction le plus utilisé dans le monde (dix milliards de tonnes !) en raison de son faible coût de production (un peu plus de 100 euros/m3). C’est un mélange de sable, de graviers (granulats) et de ciment, ce dernier assurant la cohésion de l’ensemble (liant). La fabrication d’un béton requiert pour sa mise en œuvre une formulation définie qui varie en fonction de la taille du sable et des graviers, voici une formulation typique du béton : granulats (51%), sable (34%), ciment (10%) et eau (5%) [1].

Les mortiers sont des mélanges uniquement de sable, de ciment et d’eau et se distinguent donc des bétons par l’absence de granulats ! [2]

Le ciment est connu depuis l’Antiquité : les romains ont construit le pont de Sommières dans le Gard depuis plus de 2000 ans !

On distingue trois types de ciments [3].

Le caementum romain ou ciment de pouzzolane était obtenu en chauffant dans un four de la craie (calcaire CaCO3), qui à 600°C se décompose en chaux (CaO) avec formation de gaz carbonique (CO2). La chaux est mélangée à de l’eau et des cendres (provenant initialement du volcan de Pouzzoles près de Naples !). La formulation fut perdue au cours des siècles… et c’est l’ingénieur français Vicat qui la retrouve par analyse des constructions romaines mais qui hélas ne dépose pas de brevet [4a]. Au cours de ce processus il se forme une réaction entre la chaux hydratée et la silice des cendres pour former un gel dit de tobermorite constitué majoritairement de trihydrate de silice tricalcique de formule (CaO)3 (SiO2)2 (H2O)3 [4b].

Actuellement les ciments pouzzolanes nouvelles générations sont appelés ciments aux cendres volantes ; ils contiennent des particules fines de silice et d’alumine mais peu de chaux. Ces cendres sont issues des produits non brûlés de la combustion du charbon dans les centrales thermiques que l’on récupère pour ne pas polluer. La production de ces cendres est proche de 800 millions de tonnes par an dans le monde et seulement 15% sont réellement utilisées le reste étant mis en décharge. Comme ce sont des sous-produits de la combustion du carbone, ils sont ainsi retranchés du bilan carbone dans la fabrication des ciments dit décarbonés ! [5]

Le ciment de Portland est obtenu en chauffant de la craie et de l’argile (aluminosilicate hydratée (SiO2)2 Al2O3 H2O) dans un four tournant à 1450°C. Cette température a été rendue possible avec le développement de l’industrie du charbon au XIXe siècle dans le Pays de Galles, avec un brevet déposé en 1824 par Aspdin pour obtenir un ciment gris-blanc (comme le calcaire de l’Ile de Portland !) Le ciment de Portland est plus résistant que le ciment de Pouzzolane. Si ce procédé demande beaucoup d’énergie (850 kcal soit 3500 kJ par 0,5 g de CO2 produit), il est aussi très polluant : 850 kg de CO2 (environ 400 kg pour la décarbonatation et 450 kg pour réaliser la fabrication) sont émis par tonne de ciment produit, ce qui correspond à 5% des émissions anthropiques de CO2 [1] [5].

Les ciments aux laitiers : depuis les années 1970 d’abord en Russie, des ciments ont été fabriqués en utilisant du laitier de haut fourneau qui contient principalement de la silice, de l’alumine et de la chaux. Ce ciment ne réagit pas sensiblement au contact de l’eau mais si on additionne de la soude, alors il se produit une sursaturation avec la silice et l’alumine qui passent en partie en solution entrainant la formation d’un aluminosilicate de sodium (Na AlSiO4) et une gélification de l’ensemble. Ce procédé est intéressant d’un point de vue environnemental car le laitier n’est pas produit pour lui-même mais il est ici valorisé. C’est encore un exemple de ciment décarboné ! [6]

La prise du béton résulte de sa formulation et s’interprète par la réaction fondamentale d’hydrolyse des ions oxydes présents qui sont des bases fortes. La réaction s’accompagne d’un dégagement de chaleur (69 kJ/mol). L’élévation de la température qui en résulte peut donc être très importante lors de l’hydratation d’un ciment et à partir de 70°C, température que l’on peut atteindre en l’absence de précautions au sein des ouvrages importants comme les ponts, il peut se produire des fissures ultérieures dans l’ouvrage en béton. On peut alors, pour y remédier, ajouter du calcaire broyé, composé inerte vis-à-vis de l’eau, ou du laitier à réaction d’hydratation beaucoup moins exothermique.

Dans les ciments Portland actuels on ajoute 5% de sulfate de calcium (gypse) car il a une grande importance sur les propriétés mécaniques : si le taux de sulfatage est trop faible, il y a un refroidissement prématuré du béton qui ne peut alors être mis en place ; si le taux est trop fort la résistance mécanique diminue. Ces mécanismes ont été étudiés par des mesures par calorimétrie isotherme à mesure de flux thermique [7].

D’un point de vue mécanique, le béton au moment du malaxage dans la toupie (bétonnière) reste fluide ; une fois coulé, la prise intervient en quelques heures et 100 heures sont nécessaires pour obtenir son durcissement total. Sa densité est de 2,3 car c’est un matériau poreux. L’eau peut donc y circuler avec un pH très basique de 13.

Ses propriétés mécaniques de compression sont bonnes de l’ordre de 30 MPa. Mais sa résistance à la traction est mauvaise et cela explique que le béton soit souvent associé à de l’acier qui reprend les efforts de traction : c’est le célèbre béton armé ! Le béton précontraint découvert et breveté par Eugène Freyssinet en 1928 fut utilisé en particulier pour sauver la gare maritime du Havre en 1933 qui s’enfonçait dans un sol argileux peu résistant. Des tensions internes dans le béton sont assurées par des câbles tendus au sein du béton : ceux-ci sont mis en tension avant ou après la prise du béton, et cela entraine une compression de l’ouvrage (pont de l’île de Ré par exemple) au repos et permet de résister aux charges d’exploitation et aux modifications climatiques. Tant que les tensions mécaniques subsistent au sein du béton, il n’y a pas de risque d’apparition de fissures. En effet celles-ci pourraient, en raison de la porosité du béton, favoriser la circulation de l’eau en son sein et corroder les « fers du béton » qui ne seraient donc plus passivés ! [8]

De nos jours, plus de 95% des bétons présentent de plus des adjuvants dans leur formulation. Un adjuvant est un produit dont l’incorporation à faible dose dans le béton ou le ciment provoque les modifications des propriétés du mélange, à l’état frais ou durci sans en altérer les caractéristiques mécaniques, physiques ou chimiques. Il y a trois grandes catégories d’adjuvants : ceux qui modifient l’ouvrabilité du béton appelés, plastifiants et superplastifiants, ceux qui modifient la prise (accélérateurs ou retardateurs) et le durcissement (accélérateurs), et enfin ceux qui modifient certaines propriétés du béton comme les entraîneurs d’air, les hydrofuges de masse ou les rétenteurs d’eau [9].

Des bétons de très haute performance atteignent actuellement 150 MPa avec l’ajout en particulier de fibres organiques. On peut alors s’affranchir de l’acier et on obtient des structures très fines et élégantes ressemblant à de la dentelle comme cela se voit au MUCEM de Marseille ! Des bétons luminescents, élaborés en ajoutant des pigments photoluminescents qui absorbent les UV le jour et les restituent la nuit, ont été utilisés pour construire des ponts routiers. Les bétons seront susceptibles de s’autonettoyer en utilisant des nanoparticules de dioxyde de titane (TiO2) qui photocatalysent l’oxydation des mousses et les moisissures qui apparaissent sur les façades ! [10]

    
La structure en six viaducs du pont de l’Ile de Ré - photo : C. Maurer/pixabay.
La structure en dentelles du MUCEM - photo :  J. Rouquerol

Pour approfondir et illustrer ce sujet :

[1] Matériaux de M. Ashby et D. Jones, Editions Dunod (1991) tome 2, page 180

[2] Les mortiers : un peu d’histoire et principales applications actuelles de J. Douce, L’Actualité Chimique n°410 (septembre 2016) p. 63

[3] Le produit du jour: le ciment de J.-C. Bernier (2011), site Société Chimique de France

[4a] Comment a été retrouvé le secret du ciment romain ? de G. Emptoz, site Mediachimie.org
[4b] Vidéo Petites histoires de la chimie - Louis Vicat - Le secret du ciment romain de G. Emptoz, site Mediachimie.org

[5] Les matériaux de structure du développement durable pour l’habitat de A. Ehrlacher et coll. in « La Chimie et l’Habitat, EDP Sciences (2011)  p. 175

[6] Les bétons décarbonés de P. Pichat, L’Actualité Chimique n°373 (avril 2013) p. 51

[7] La calorimétrie et les matériaux de J. Grenet, L’Actualité Chimique dossier calorimétrie n°441 (juin 2019)  p. 49

[8] Définition du béton précontraint par l'Association Freyssinet

[9] Les adjuvants : pour des bétons à l’épreuve des chantiers et du temps (PDF) de P. Guiraud  Construction Moderne - Annuel Ouvrages d’art (2014)

[10] Les bétons de demain de V. L’Hostis, L’Actualité Chimique n°446 (février 2020) p. 59

Auteur(s) : Jean-Pierre Foulon
Précédent • … 58596061626364 • … Suivant