Mediachimie | Noël : la magie des bougies. Comment les bougies nous éclairent-elles ?

Date de publication : Mardi 20 Décembre 2022
Rubrique(s) : Question du mois

Le principe de la bougie, vieux comme le monde, consiste en un corps gras (combustible) et une mèche inflammable.

Lorsqu’on enflamme la mèche, la chaleur dégagée fait fondre le corps gras. Ce liquide cireux va alors grimper le long de la mèche par un phénomène appelé capillarité et se vaporiser sous l’action de la chaleur. Les gaz formés brûlent au contact du dioxygène de l’air : c’est la flamme de la bougie.

Cette combustion consomme la cire et le dioxygène et elle dégage de la chaleur. Elle va donc permettre la fonte de la cire restante et fournir en continu l’apport en combustible dans la mèche, ce qui entretient le processus, bien que la mèche se consume peu à peu.

En l’absence d’air (donc de dioxygène) - ou de mèche - la bougie s’éteint.

Les composants des bougies

Historiquement, la mèche était un jonc, il était trempé dans de la graisse fondue animale, suif de bœuf ou de mouton, graisse de cochon… ou cire d’abeille (beaucoup plus coûteuse et essentiellement réservée aux usages religieux) qu'on laissait ensuite durcir.

L’identification au début du XIXe siècle de la stéarine (i) extraite de graisse animale ou végétale et dont l’acide stéarique est issu puis, à la fin de ce siècle de la paraffine solide, issue du pétrole, a permis la production industrielle des bougies, formées avec des mèches en coton ou en chanvre tressé entourées d’une cire pouvant être moulée et solide à température ordinaire. Lors de leur fabrication, les bougies peuvent être colorées, si l’on introduit des pigments, ou parfumées par exemple par des huiles essentielles.

Les températures de fusion varient selon les produits utilisés. La température de fusion de la paraffine se situe entre 52 et 56°C, celle de l’acide stéarique est de 69-70°C et celle de la cire d’abeille se situe entre 62 et 65°C.

De nos jours, les bougies commercialisées sont essentiellement fabriquées à partir de paraffine.

Les constituants chimiques

Les graisses végétales ou animales sont composées de triesters du glycérol et d’acides à très longue chaine carbonée appelés acides gras (ii). Ainsi, la stéarine est le triglycéride de formule C57H110O6) (iii) dont on tire l’acide stéarique de formule CH3-[CH2]16-COOH. C’est l’acide stéarique qui a permis la production à grande échelle de bougies tout au cours du XIXe siècle (iv).

La paraffine est un mélange obtenu en raffinerie à partir de résidus solides du pétrole. Elle est constituée d’alcanes, molécules d’hydrocarbures saturés, de formule brute CnH2n+2, où la valeur de n se situe entre 18 et 32.

La paraffine qui est utilisée dans la production industrielle de bougies est en général complétée par l’apport d’un mélange appelé « acide stéarique technique » composé d’acides palmitique(v)et stéarique, et improprement appelé « stéarine »(vi). Ce mélange permet de rendre la cire plus opaque, plus dure ou encore d’augmenter la durée de combustion de la bougie.

La cire d’abeille est un mélange naturel complexe dont les constituants chimiques ne sont pas tous identifiés. Elle est composée d'environ 15% d'hydrocarbures linéaires à longues chaînes, 71% d'esters (dont 44% de monoesters d'acide gras et d'alcool gras, 12% d'hydroxyesters, 14% de di et triesters et 1% d'esters de stérols), 3% d'acides libres (vii) et 1% d'alcools libres, auxquels s’ajoutent des composés variables selon l’origine de la ruche.

La combustion de la bougie

La combustion complète des substances constituant une bougie conduit à la formation de CO2 et H2O. Mais si elle est incomplète, par manque d’oxygène elle produit aussi du monoxyde de carbone CO et des dépôts de carbone (suie).

De plus, une fois chauffés, la paraffine et les éventuels adjuvants parfumés ou colorés libèrent un peu de substances (acétone, benzène, toluène) toxiques et agressives pour les poumons. La combustion d’une bougie parfumée donne aussi naissance à des particules ultrafines associées à des HAP, hydrocarbures aromatiques polycycliques que l’on retrouve lors d’une combustion incomplète, et dont la toxicité est connue.

S’il y a de la fumée ou de la suie visibles, c’est que la bougie contient des substances polluantes.

La cire d’abeille ne dégage pas de fumée en brûlant ce qui donne des bougies moins polluantes.

Il est donc conseillé d’utiliser les bougies dans un milieu suffisamment aéré pour profiter de la magie qu’elles offrent.

Andrée Harari, Françoise Brénon et l’équipe question du mois

 

 

(i) La stéarine a été découverte par Michel Eugène Chevreul au XIXe siècle lors de ses travaux sur les corps gras entre 1813 et 1823. Voir son traité Recherches chimiques sur les corps gras d’origine animale (sur le site Gallica -BNF)

(ii) Un acide gras est un acide carboxylique dont la chaine carbonée présente de 4 à 36 atomes de carbone.

(iii) La stéarine est le triester formé à partir du glycérol (ou propan-1,2,3-triol) HOH2C–CHOH–CH2OH et de l’acide stéarique CH3-[CH2]16-COOH. Sa formule développée est :

Image illustrative de l’article Tristéarine
Domaine public, Lien

(iv) M. E. Chevreul et J. L. Gay-Lussac avaient entrevu l’innovation issue de leurs travaux d’isolement des acides gras, en particulier de l’acide stéarique, et avaient pris un brevet pour la réalisation de la bougie stéarique au cours des années 1830. Source « Des produits chimiques très recherchés: les acides gras pour la fabrication des bougies. La naissance de la lipochimie industrielle au cours du XIXe siècle », Gérard Emptoz, Culture technique, n° 23 (1991), pp. 33-45.

(v) L’acide palmitique a pour formule CH3(CH2)14COOH

(vi) Voir la définition du dictionnaire Larousse

(vii) Sources "Manuel des corps gras", Technique et Documentation, Lavoisier, Paris, 1992, pages 297 et 306 et Cires et cirages E. Gomez § 2.2.2.
Pratiquement un quart de la cire d'abeille est du palmitate de myricyle C15H31-COO-C30H61 et on trouve également une quantité de l'ordre de 12% de cérotate de myricyle C25H51-COO-C30H61.

 

Pour en savoir plus

[1] Histoire d’une chandelle, de M. Faraday : pages 29 et suivantes (J. Hetzel (Paris) Ed.) (sur le site Gallica - BNF)
[2] Pour les différents parties éclairantes de la flamme, l’article : The candle, the light bulb and the radio, de R. de Hilster, CNPS Proceedings 2017, p. 13

 

Crédits illustration : DR. A. Harari pour Mediachimie

Page précédente

Dans le cadre du  colloque " Chimie et Matériaux Stratégiques " du 9 novembre 2022 à la Fondation de la Maison de la Chimie, l’équipe de Mediachimie.org vous propose de tester vos connaissances au travers de deux quiz ludiques et instructifs.

C’est l’occasion de découvrir : que les métaux et matériaux stratégiques, bien que relativement rares, inégalement répartis sur la planète ou difficilement accessibles, sont présents tout autour de nous dans la fabrication de nos objets du quotidien comme nos téléphones, nos ordinateur ou nos batteries. Mais également de comprendre que ces matériaux sont mondialement indispensables dans la décarbonation de l’énergie dans toutes ses applications industrielles et environnementales.

À vous de jouer !

Mots-clés : matériaux critiques, terres rares, polymères
Page précédente
Mots-clés : pigment, couleur, expertise, terminale, grand oral

La chimie sur la trace des faussaires.  De tous temps, l’Homme copia les oeuvres de ses prédécesseurs comme les romains celles de la Grèce antique.

Les faussaires existent dans tous les domaines : de la fausse monnaie aux faux documents historiques, en passant par des faux artistiques et bien d’autres… En règle générale, cela concerne tout ce qui est lucratif.

Au cours des dernières décennies, des faussaires ont été démasqués grâce aux progrès scientifiques d’analyse en chimie et en physique.

Mais comment ces scientifiques mènent-ils l’enquête et quelles preuves peuvent-ils mettre en avant ? C’est ce que nous allons aborder dans ce dossier en privilégiant ici un seul axe, celui des pigments, naturels et/ou synthétiques, utilisés par les peintres.

Comment la chimie permet-elle de démasquer des faussaires ?

Problématique :

  • Pourquoi la chimie et les peintres sont-ils intimement liés ?
  • Quels sont les exemples les plus marquants de la synthèse de pigments ?
  • Comment une expertise chimique des pigments peut-elle démasquer des faussaires ?

Des pistes sont également proposées pour un projet professionnel en lien avec la problématique.

Auteur(s) : Éric Bausson
Source : Dossier réalisé par les Éditions Nathan en partenariat avec La Fondation de la Maison de la Chimie et Mediachimie

Mediachimie | Plus de gaz… Plus d’engrais ?

Date de publication : Vendredi 02 Décembre 2022
Rubrique(s) : Éditorial

La crise européenne sur le gaz naturel (le méthane) et sur l’énergie a ses plus vives répercussions sur l’industrie et notamment sur l’industrie chimique qui est énergivore. En effet, outre les besoins en électricité et en chaleur pour les réactions chimiques industrielles, le gaz n’est pas seulement un carburant énergétique mais aussi une matière première pour des produits essentiels.

Prenons comme exemple la chaine des engrais azotés passant par le dihydrogène, l’ammoniac, l’acide nitrique et enfin les nitrates. En effet depuis la découverte du procédé industriel de synthèse de l’ammoniac dit Haber-Bosch en 1913, les engrais azotés ont permis à l’agriculture de multiplier les rendements agricoles notamment sur le blé et le maïs et aussi d’autres cultures vivrières, par un facteur 5 qui n’a pas été l’un des moindres à contribuer à l’augmentation de la population mondiale après 1920.

La synthèse de l’ammoniac, dont la réaction N2 + 3 H2 = 2 NH3, parait simple, exige hautes pression et température (300 bars ; 500°C), donc consomme de l’énergie électrique pour les compresseurs et de la chaleur pour le réacteur.

Mais il faut aussi préalablement produire le dihydrogène et le diazote ce qui s’accompagne de consommation de méthane et de formation de CO2. En effet le dihydrogène H2 est majoritairement issu de la réaction du méthane sur l’eau à haute température et le diazote N2 est obtenu en éliminant le dioxygène de l’air par combustion du méthane (réaction dont la chaleur est récupérée pour la réaction précédente). Le détail de ces réactions est consultable sur le site Mediachimie (1).

On peut aussi obtenir du dihydrogène par combustion partielle de charbon qui conduit à 1200°C au « syngas » (2) dont on peut séparer l’hydrogène. Ce procédé est notamment utilisé en Chine.

Dans le monde on fabrique près de 100 millions de tonnes de dihydrogène s’accompagnant hélas de l’émission de près de 1 milliard de tonnes de CO2 (3).

La fabrication des engrais azotés nécessite préalablement de transformer une partie de l’ammoniac en acide nitrique puis de faire réagir l’ammoniac avec une solution d’acide nitrique. On obtient du nitrate d’ammonium NH4NO3 pouvant être utilisé en solution ou en granulés (4). Un autre engrais utilisé largement est l’urée CO(NH2)2. On le fabrique industriellement par réaction de l’ammoniac sur CO2 à 180°C et sous pression de 150 bars en 2 étapes :

CO2 + 2 NH3 = NH2COONH4

suivie de NH2COONH4 = CO(NH2)2 + H2O   (5)

La consommation d’engrais dans le monde s’élève à près de 180 millions de tonnes dont environ 120 Mt azotés qui exigent, rien qu’en matière première, 72 Mt de gaz naturel. On estime que rien que la production de 170 Mt d’ammoniac est responsable de 2% des émissions de CO2 mondiales.

Des procédés plus propres ?

C’est alors qu’intervient la recherche de procédés alternatifs « plus propres ». On trouve alors plusieurs couleurs pour NH3 comme pour le dihydrogène (6) :

  • l’ammoniac « gris » par le procédé traditionnel Haber-Bosch issu du méthane ou d’hydrocarbures,
  • l’ammoniac « bleu » avec encore Haber-Bosch mais avec la capture du CO2,
  • l’ammoniac « vert » toujours Haber-Bosch mais avec de l’hydrogène obtenu par électrolyse de l’eau.

Pour l’instant seule une installation en Arabie Saoudite et un projet au Canada sont ou seront capables de fournir et commercialiser de l’ammoniac bleu qui, à cause du transport vers l’Europe, devient un peu gris-bleu !

Les deux plus importants producteurs d’ammoniac européens YARA et BASF penchent vers une solution de décarbonation en utilisant de l’hydrogène produit par des électrolyseurs proches des réacteurs d’ammoniac. Si l’électricité utilisée vient d’éoliennes alors il sera vert, si c’est de l’électricité issue du nucléaire il tendra vers le jaune. En fait techniquement on peut se passer de sources de méthane mais le problème est économique car l’ammoniac « vert » a un prix de revient lié au prix du MWh et est bien plus élevé que le « gris » sauf si le prix du gaz reste anormalement élevé.

La recherche pour des procédés « durables »

Y a-t-il des méthodes « douces » pour obtenir l’ammoniac ? Le principal problème chimique est de casser la molécule de diazote dont la liaison N≡N est particulièrement forte. Plusieurs recherches sont menées pour y parvenir, une équipe américaine a réussi à hydrogéner l’azote de l’air en solution grâce à un complexe hydrocarboné de zirconium. Des chercheurs de Rice University ont réussi par électro catalyse à produire environ 10 g d’ammoniac par heure à partir d’un catalyseur constitué de microcouches 2D de sulfure de molybdène où les atomes de soufre sont partiellement remplacés par du cobalt. Une autre équipe coréenne a simulé la même réaction d’un enzyme nitrogénase que certaines bactéries utilisent pour fabriquer l’ammoniac à partir de l’azote de l’air avec des feuillets de nitrure de Bore BN. C’est la même stratégie qu’a suivi une équipe de Montpellier en s’attaquant aux nitrates dispersés dans l’environnement pour les transformer par électro catalyse en NH3.

Ces réactions ont en commun de ne pas dégager de gaz à effet de serre (CO2) et aussi d’être à l’échelle du laboratoire capable de générer quelques grammes par heure. Il faudra encore des années avant qu’un procédé industriel robuste puisse concurrencer le procédé classique.

L’industrie européenne

Oui l’industrie de l’ammoniac en Europe est vitale. Le cours du gaz qui inférieur à 50 € le MWh en 2020 a dépassé les 300 € au plus fort de la crise en août 2022 pour revenir à des valeurs proches de 100 € pénalise fortement la production d’ammoniac et celle d’engrais azotés. Le nitrate et l’urée ont vu leurs prix multipliés par 3 entre 2021 et 2022 ce qui contraint les agriculteurs à diminuer drastiquement les intrants et même à les supprimer pour les petites exploitations avec des répercussions sur les rendements (7).

Même la chaine des constructeurs automobile est atteinte. Devant le prix du gaz et de l’énergie les chimistes européens ont partiellement arrêtés les unités d’ammoniac et réduit les fabrications d’au moins 30% d’où un manque d’urée pour la dépollution automobile (AdBlue) et industrielle. D’un point de vue plus général, la chimie européenne suivant la déclaration du président de BASF en Allemagne se pose la question de sa survie ou de ses délocalisations si la situation tendue sur l’énergie et le gaz perdure.

Jean-Claude Bernier et Françoise Brénon

 

Pour en savoir plus :
(1) Comment fabriquer des engrais avec de l’air ? La synthèse de l'ammoniac, Françoise Brénon (Réaction en un clin d’œil, Mediachimie.org)
(2) Comment fabriquer de l’essence avec du charbon ? La réaction de Fischer-Tropsch, Jean-Claude Bernier (Réaction en un clin d’œil , Mediachimie.org)
(3) Vision de l’hydrogène pour une énergie décarbonée, conférence et article de Xavier Vigor Colloque Chimie et énergies nouvelles, 10 février 2021
(4) Le nitrate d’ammonium, un engrais dangereux ?, Jean-Claude Bernier (éditorial, Mediachimie.org)
(5) La première synthèse organique, Marika Blondel-Mégrelis (Mediachimie.org)
(6) Qu’est-ce que l’hydrogène « vert » ?, Françoise Brénon (Question du mois, Mediachimie.org)
(7) Agriculture du futur : s’appuyer sur les savoirs et non sur les croyances, Jean-Yves Le Deaut, Colloque Chimie et Agriculture durable, un partenariat en constante évolution scientifique, 10 novembre 2021

 

Crédits : image d'illustration, licence CC0, PxHere

Mediachimie | La chimie recrute ?

Date de publication : Mardi 29 Novembre 2022
Rubrique(s) : Événements

La chimie est partout et emploie des opérateurs, techniciens, ingénieurs et docteurs dans de très nombreux secteurs d’activité, la chimie mais aussi la pharmacie, la cosmétologie, l’énergie, la plasturgie, la métallurgie, l’électronique, les matériaux, la protection des cultures et même dans la police scientifique… La chimie se diversifie dans la chimie du végétal, la biomasse, le recyclage, l’environnement, la santé…

Pour en savoir plus, vous pouvez consulter :

En recherche, en développement, en production, en commercial…, les compétences sont et seront encore plus recherchées au cours des prochaines années.

Lycéens et étudiants, vous qui décidez de vos choix futurs, découvrez les domaines d’activité en entreprise, les fonctions ou métiers associés ainsi que des vidéos dans l’espace Métiers.

Pour vous aider à trouver la bonne voie consultez :


Une rubrique « ? Métiers, des réponses à vos questions » complète les informations.
 

Mediachimie | Pourquoi réduire la consommation de sel dans l'alimentation ?

Date de publication : Mardi 29 Novembre 2022
Rubrique(s) : Question du mois

C’est un problème de santé publique et aussi de chimie analytique ! 

Nous avons besoin de sel (chlorure de sodium de formule NaCl) pour maintenir constant notre équilibre électrolytique : c’est-à-dire les rapports entre les concentrations des différents ions (sodium, potassium, chlorure, calcium, magnésium, phosphate) et l’eau contenus dans notre organisme. Or on perd du sel dans l’urine et la sueur et c’est pourquoi nous devons consommer du sel. Si le sel est vital pour notre organisme un excédent de sel entraine une augmentation de la pression artérielle conduisant à des maladies cardiovasculaires et des AVC. Il est à signaler que l’organisme a besoin d’un minimum de sel pour bien fonctionner car si nous n’en absorbions pas du tout les effets de toxicité seraient les mêmes que ceux décrits lors d’une trop grande consommation. L’OMS recommande de diminuer la consommation de sel depuis une dizaine d’années pour atteindre un objectif de 30% de baisse en 2025.

Pour réduire la consommation en sel, il faut : i) diminuer la dose journalière qui est située actuellement entre 6,5 et 12,5 g de sel/jour, ii) réduire le taux de sel dans les aliments consommés, iii) réduire l’usage du sel de table, en ne dépassant pas le taux de 1,5 % en masse d’aliment, iv) abaisser l’optimum de préférence au goût en utilisant par exemple des arômes de cacahuète ou des ajouts d’herbes aromatiques (persil, basilic, origan… qui renforcent la perception du sel. Des tests sont actuellement en cours sur l’utilisation des différentes variétés de sel (sel fin, fleur de sel, sel micronisé) [1].

La saveur salée fait partie des cinq saveurs fondamentales dont l’amer, l’acide, le salé, le sucré et l’unami (qui vient du japonais : goût protéine des viandes). Leur carte de répartition n’est pas localisée dans des zones précises de la langue contrairement à une idée répandue jusque dans les années 70 [2]. La saveur salée est perçue par toutes les papilles de la langue par un mécanisme transmembranaire qui déclenche un influx nerveux transmis au cerveau nous permettant d’apprécier cette saveur. Les seuils de détection varient avec l’âge de 0,3 g/L pour les juniors à 0,8 g/L pour les seniors, sans différence observable entre les hommes et les femmes. Mais il n’y a pas que le cation sodium du chlorure de sodium qui est responsable de la saveur salée : l’ion potassium, le lithium (non consommable) et l’ion ammonium participent aussi à cette saveur. Le chlorure d’ammonium est utilisé dans les pays du Nord où les rennes sont domestiqués de cette manière car ils en raffolent !

Disposer de mesures précises de la teneur en sel de nos aliments est donc nécessaire.

Des observations qualitatives de fluorescence ont montré que le sel pénètre peu dans la viande grillée de bœuf mais assez profondément dans la chair du poulet cuit [1] .

Des mesures IRM (imagerie par résonance magnétique) issues de la résonance magnétique nucléaire (RMN) du sodium (23Na), nécessitant d’utiliser des champs magnétiques forts de l’ordre de 4,7 teslas (environ cent mille fois le champ magnétique terrestre !) permettent de doser avec une grande précision la teneur en sodium des aliments [1]. Par exemple on a pu mesurer exactement la quantité de sel dans des jambons après un séchage de plus de six mois (8 g de sel pour 55 g d’eau !) Mais cette méthode permet aussi d’obtenir une cartographie de la répartition du sel à l’intérieur des aliments (sans la destruction de cet aliment). Des carottes cuites dans des solutions classiques de cuisine ont été analysées et la concentration du sel au bord des carottes est égale à 7,2 g/L tandis qu’à l’intérieur de la carotte elle est deux fois plus faible ! Une étude plus fine des formes des spectres montre l’existence d’ions sodium libres mais aussi d’ions sodium liés aux molécules voisines contenues dans l’aliment, ce qui donne des informations sur la relation entre la saveur salée plus ou moins longue en bouche et la nature des aliments !

À noter que l’emploi du glutamate de sodium comme alternative au chlorure de sodium fait encore l’objet actuellement de travaux de recherche car il est responsable des saveurs : salée mais aussi unami !

Jean-Pierre Foulon et l'équipe Question du mois

 


Note : L’IRM du sodium est aussi utilisée avec succès pour doser les ions sodium dans le cerveau humain (travaux de recherche réalisés à l’hôpital de Marseille en 2022 !) permettant des diagnostics médicaux très précieux.

Pour en savoir plus :
[1] Comment réduire le sel dans notre alimentation ?  série de cinq conférences vidéos par H. This, C. Hugol-Gential, J.M. Bonny, T. Thomas-Danguin, J.P. Poulain, en libre accès sur le site de l’Académie de l’agriculture, séance 19/10/2022
[2] Le goût : de la molécule à la saveur, Loïc Briand, in La chimie et les sens (EDP Sciences, 2018) pp. 189-209 ; vidéo et chapitre du Colloque La chimie et les sens (22 février 2017).

 

Crédits : image d'illustration, licence CC0, PxHere

Page précédente

La chimie, au cœur d’un nucléaire durable. L’industrie nucléaire est une industrie jeune. En 1789, le chimiste allemand Martin Heinrich Klaproth découvre le minerai d’uranium. Environ un siècle plus tard, en 1896, le français Henri Becquerel met en évidence sa propriété radioactive. En 1938, le physico-chimiste allemand Otto Hahn réalise pour la première fois la réaction de fission de l’uranium 235 (235U) puis en 1942, aux États-Unis, le physicien italien Enrico Fermi réalise la première réaction en chaîne contrôlée de fission nucléaire. Ce n’est qu’à partir des années cinquante que l’intérêt du nucléaire à vocation civile a pris son envol en particulier en France, aux États-Unis et en URSS.

Auteur(s) : Françoise Brénon et Gérard Roussel
Source : Série Les chimistes dans

Mediachimie | Retrouvez le colloque Chimie et matériaux stratégiques

Date de publication : Vendredi 18 Novembre 2022
Rubrique(s) : Événements

Les vidéos et résumés des conférences du colloque Chimie et matériaux stratégiques du 9 novembre 2022 sont disponibles sur Mediachimie et sur Youtube.

Les colloques de la série “Chimie et …” organisés et financés par la Fondation de la Maison de la Chimie sont d’accès gratuit pour tous les participants.

Ces colloques transdisciplinaires ont pour objectifs de donner une image des Sciences de la Chimie plus attractive, scientifiquement exacte et honnête et expliquant les apports souvent mal connus des applications de ces sciences dans la qualité de notre vie. Ils réunissent les meilleurs spécialistes pour débattre sur ce que concepts et applications des sciences de la chimie apportent et pourront apporter.

Février 2025 : Chimie et Alimentation

 

 

Novembre 2024 : Chimie et Eau

 

Février 2024 : Chimie et Sports en cette Année Olympique et Paralympique

 

Novembre 2023 : Chimie, Recyclage et Économie Circulaire

 

Février 2023 : Chimie et Intelligence Artificielle

 

Novembre 2022 : Chimie et Matériaux stratégiques

 

Février 2022 : Chimie et Notre-Dame

Page précédente

Chimie et matériaux stratégiques : Présentation du colloque

Les métaux et matériaux stratégiques sont le plus souvent relativement rares ou difficilement accessibles, inégalement répartis sur la planète, mais mondialement indispensables dans des utilisations industrielles stratégiques, notamment la décarbonation de l’Énergie dans toutes ses applications industrielles et environnementales.

Les conflits géopolitiques actuels ne font qu’amplifier l’importance de ce thème, car ces matériaux sont indispensables à la vie d’un État et leur manque entraine des impacts industriels et économiques négatifs importants, liés à un approvisionnement ou à une exploitation difficile.

Dans le cadre de notre mission de formation des jeunes et d’information des citoyens, il nous est apparu important de faire un point scientifique objectif sur les différentes facettes de ce thème transdisciplinaire au coeur de l’actualité, dans lequel la chimie joue et jouera un rôle important. Les conférenciers ont été choisis parmi les meilleurs experts de la recherche, de l’industrie, de la politique et de l’économie, dans les différents domaines concernés.

Ce colloque est ouvert sur inscription à un large public avec une attention particulière aux jeunes et à leurs enseignants. Pour que ce colloque puisse être accessible au plus grand nombre, il est disponible sur la chaine YouTube de Mediachimie.

Le niveau se veut accessible à tous pour permettre un large débat.

Danièle OLIVIER – Vice-Présidente de la Fondation internationale de la Maison de la Chimie

 

Chimie et matériaux stratégiques : Le colloque dans son intégralité

 

Télécharger l'ouvrage intégral Chimie et matériaux stratégiques en PDF - 16312 Ko

Chimie et matériaux stratégiques : Conférence par conférence

Conférences plénières d’ouverture
Animateur : Danièle OLIVIER | Vice-Présidente de la Fondation internationale de la Maison de la Chimie

- Comment définir le périmètre des matériaux stratégiques ?
Jean-François GAILLAUD | Chef du Bureau de la politique des ressources minérales non énergétiques, Direction Générale de l’Aménagement, du Logement et de la Nature, Ministère de l’Économie, des Finances et de la Relance
voir la vidéo et le résumé | le chapitre en PDF
- Quels matériaux pour les transitions énergétiques et digitales ?
Alexandre NOMINE | Maître de Conférence à l’Université de Lorraine, Enseignant et Directeur de l’Action Internationale de l’École Nationale Supérieure des Mines de Nancy, Chercheur à l’Institut Jean Lamour
voir la vidéo et le résumé | le chapitre en PDF

Table Ronde : Les défis industriels
Animateur : Danièle QUANTIN | Past-President SF2M

- Importance des métaux et matériaux pour le secteur des TIC
Gilles DRETSCH | Responsable de Projets Innovants, Direction de l’Innovation d’Orange
voir la vidéo et le résumé | le chapitre en PDF
- Matériaux critiques et axes stratégiques pour l’industrie automobile
Gildas BUREAU | Coordinateur Filière Automobile et Mobilité sur les matériaux critiques
voir la vidéo et le résumé | le chapitre en PDF
- Les enjeux matériaux pour la fabrication et le recyclage des éoliennes
Frédéric PETIT | Directeur Business Development, Siemens Gamesa Renewable Energy SAS
voir la vidéo et le résumé | le chapitre en PDF
- Polymères stratégiques sensibles pour l’industrie : bioressources, recyclage, quelles stratégies ?
Denis BORTZMEYER | Directeur Scientifique, ARKEMA et Patrick MAESTRO | Directeur Scientifique, Groupe Solvay
voir la vidéo et le résumé | le chapitre en PDF

SESSION I | Ressources et matériaux pour la transition énergétique
Animateur : Paul RIGNY | Fondation internationale de la Maison de la Chimie

- La transition énergétique, un accélérateur de notre dépendance aux métaux stratégiques
Patrick d’HUGUES | Directeur du programme scientifique « Ressources minérales et Économie Circulaire », BRGM
voir la vidéo et le résumé | le chapitre en PDF
- Risques et opportunités pour le nucléaire actuel et futur en termes de ressources minérales stratégiques
Christophe POINSSOT | Directeur général délégué et Directeur scientifique, BRGM
voir la vidéo et le résumé | le chapitre en PDF
- Cycle des matériaux stratégiques, de l’éco-conception au recyclage, appliqué aux nouvelles technologies de l’énergie
Étienne BOUYER | Directeur du programme exploratoire, Direction des Programmes, CEA
voir la vidéo et le résumé | le chapitre en PDF

SESSION II | Pénurie des matériaux – solutions apportées par la Chimie
Animateur : Marc J. LEDOUX | DRCE Émérite du CNRS

- Le défi des matériaux polymères biosourcés
Luc AVEROUS | Professeur des Universités, ICPEES-ECPM, Université de Strasbourg
voir la vidéo et le résumé | le chapitre en PDF
- Les céramiques et les réfractaires indispensables à l’industrie primaire
Jacques POIRIER | Professeur Émérite, Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI – CNRS UPR3079), Université d’Orléans
voir la vidéo et le résumé | le chapitre en PDF
- Chimie métallurgique pour résoudre les problèmes des métaux rares
Jean-Claude BERNIER | Professeur Émérite de l’Université de Strasbourg
voir la vidéo et le résumé | le chapitre en PDF

Conférence Plénière de clôture
Présentateur : Philippe GOEBEL | Président de la Fondation internationale de la Maison de la Chimie

- La stratégie de la France dans la sécurité des approvisionnements en matières premières stratégiques
Philippe VARIN | Président du World Materials Forum
voir la vidéo et le résumé | le chapitre en PDF
Précédent • … 30313233343536 • … Suivant